Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Что такое астрономия.docx
Скачиваний:
19
Добавлен:
13.11.2019
Размер:
1.1 Mб
Скачать

Космические телескопы

Основная статья: Астрономический спутник

The Einstein Observatory, рентгеновский телескоп, первоначально названный HEAO B (High Energy Astrophysical Observatory B) — Обсерватория Эйнштейна

Космический телескоп Хаббл, вид с космического шаттла Дискавери во время второй миссии по обслуживанию телескопа (STS-82).

Земная атмосфера хорошо пропускает излучение в оптическом (0,3-0,6 мкм), ближнем инфракрасном (0,6 — 2 мкм) и радиодиапазонах (1 мм — 30 м). Уже в ближнем ультрафиолетовом диапазоне с уменьшением длины волны прозрачность атмосферы сильно ухудшается, вследствие чего наблюдения в ультрафиолетовом, рентгеновском и гамма диапазонах становятся возможными только из космоса. Исключением является регистрация гамма-излучения сверхвысоких энергий, для которого подходят методы астрофизики космических лучей: высокоэнергичные гамма-фотоны в атмосфере порождают вторичные электроны, которые регистрируются наземными установками по черенковскому свечению. Примером такой системы может служить телескоп C.A.C.T.U.S..

В инфракрасном диапазоне также сильно поглощение в атмосфере, однако, в области 2-8 мкм имеется некоторое количество окон прозрачности (как и в миллиметровом диапазоне), в которых можно проводить наблюдения. Кроме того, поскольку большая часть линий поглощения в инфракрасном диапазоне принадлежит молекулам воды, инфракрасные наблюдения можно проводить в сухих районах Земли (разумеется, на тех длинах волн, где образуются окна прозрачности в связи с отсутствием воды). Примером такого размещения телескопа может служить Южнополярный телескоп (англ. South Pole Telescope), установленный на южном географическом полюсе, работающий в субмиллиметровом диапазоне.

В оптическом диапазоне атмосфера прозрачна, однако из-за Рэлеевского рассеяния она по-разному пропускает свет разной частоты, что приводит к искажению спектра светил (спектр сдвигается в сторону красного). Кроме того, атмосфера всегда неоднородна, в ней постоянно существуют течения (ветры), что приводит к искажению изображения. Поэтому разрешение земных телескопов ограничено значением приблизительно в 1 угловую секунду, независимо от апертуры телескопа. Эту проблему можно частично решить применением адаптивной оптики, позволяющей сильно снизить влияние атмосферы на качество изображения, и поднятием телескопа на большую высоту, где атмосфера более разряженная — в горы, или в воздух на самолетах или стратосферных баллонах. Но наибольшие результаты достигаются с выносом телескопов в космос. Вне атмосферы искажения полностью отсутствуют, поэтому максимальное теоретическое разрешение телескопа определяется только дифракционным пределом: φ=λ/D (угловое разрешение в радианах равно отношению длины волны к диаметру апертуры). Например, теоретическая разрешающая способность космического телескопа с зеркалом диаметром 2.4 метра (как у телескопа Хаббл) на длине волны 555 нм составляет 0.05 угловой секунды (реальное разрешение Хаббла в два раза хуже — 0.1 секунды, но все равно на порядок выше, чем у земных телескопов).