Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВОПРОСЫ ВХОДНОГО КОНТРОЛЯ ДЛЯ ДИСЦИПЛИНЫ метрол...docx
Скачиваний:
3
Добавлен:
17.11.2019
Размер:
347.61 Кб
Скачать

Силовые линии магнитного поля.

Как уже было отмечено выше, математически магнитное поле описывается с помощью такой математической конструкции как векторное поле – каждой точке в пространстве ставится в соответствие вектор (в данном случае – магнитной индукции):   . Или, что равносильно, для полного описания магнитного поля необходимо задать три функции (компоненты вектора индукции BxByBz), каждая из которых зависит от трех аргументов (координат точки x,y,z).

Для наглядного представления этого поля (как и любого векторного поля) удобно использовать силовые линии (Рис.14).

Силовыми линиями магнитного поля называются линии, касательные к которым в каждой точке совпадают с направлением вектора магнитной индукции.

Со свойствами силовых линий, присущих магнитному полю, мы познакомимся позднее, сейчас только напомним свойства таких линий, общие для любых векторных полей:

  1. Силовые линии магнитного поля не пересекаются.

  2. Силовые линии магнитного поля не имеют изломов.

электростатическое поле

Для того чтобы описать электрическое поле, нужно задать вектор напряженности в каждой точке поля. Это можно сделать аналитически или графически. Для этого пользуются силовыми линиями – это линии, касательная к которым в любой точке поля совпадает с направлением вектора напряженности  (рис. 2.1).

  Рис. 2.1

       Силовой линии приписывают определенное направление – от положительного заряда к отрицательному, или в бесконечность.

       Рассмотрим случай однородного электрического поля.

22. Движение заряженной частицы в магнитном поле. Сила Лоренца. 

Сила Лоренца — сила, с которой, в рамках классической физикиэлектромагнитное поле действует на точечную заряженнуючастицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью   заряд   лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического   имагнитного   полей. Выражается в СИ как:

Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найдено Хевисайдом[2].

23. Сила, действующая на проводник с током в магнитном поле. Правило левой руки. 

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера.

 

Сила действия однородного маг­нитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником: 

F=B.I.. sin  — закон Ампера.

Направление силы Ампера (правило левой руки) Если левую руку расположить так, чтобы перпендикулярная составляющая вектора В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник с током.

24. Явление электромагнитной индукции. Закон Фарадея. 

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Закон Фарадея

Согласно закону электромагнитной индукции Фарадея (в СИ):

где

 — электродвижущая сила, действующая вдоль произвольно выбранного контура,

   — магнитный поток через поверхность, натянутую на этот контур.

Знак «минус» в формуле отражает правило Ленца, названное так по имени русского физика Э. Х. Ленца:

Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:

где

 — электродвижущая сила,

 — число витков,

 — магнитный поток через один виток,

 — потокосцепление катушки.

25. Электромагнитные волны, скорость их распространения. 

Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.

Существуют электромагнитные волны, то есть распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волныпоперечны – векторы   и   перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны

Электромагнитные волны распространяются в веществе с конечной скоростью

Здесь ε и μ – диэлектрическая и магнитная проницаемости вещества, ε0 и μ0 – электрическая и магнитная постоянные: ε0 = 8,85419·10–12 Ф/м,μ0 = 1,25664·10–6 Гн/м.

Длина волны λ в синусоидальной волне свявзана со скоростью υ распространения волны соотношением λ = υT = υ / f, где f – частота колебаний электромагнитного поля, T = 1 / f.

Скорость электромагнитных волн в вакууме (ε = μ = 1): 

Скорость c распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных.

Вывод Максвелла о конечной скорости распространения электромагнитных волн находился в противоречии с принятой в то время теорией дальнодействия, в которой скорость распространения электрического и магнитного полей принималась бесконечно большой. Поэтому теорию Максвелла называют теориейблизкодействия.

26. Внешний фотоэффект, понятие красной границы фотоэффекта. 

Фотоэффе́кт — это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.

Фотокатод — электрод вакуумного электронного прибора, непосредственно подвергающийся воздействию электромагнитных излучений и эмитирующий электроны под действием этого излучения.

Зависимость спектральной чувствительности от частоты или длины волны электромагнитного излучения называют спектральной характеристикой фотокатода.