Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
радиолокационые системы Тяпкин.docx
Скачиваний:
4558
Добавлен:
17.11.2019
Размер:
43.5 Mб
Скачать

Радиолокаторы с истинной внутренней когерентностью

Принцип работы радиолокатора рассмотрим на примере схемы, изображенной на рис.4.82.

Стабильный задающий генератор формирует непрерывные колебания несущей частоты ( f 0 ), которые являются опорными для фазового детектора. Импульсный модулятор обеспечивает включение усилителя мощности на время излучения импульсов ( и ). Усилитель мощности с линейной фазово-частотной характеристикой усиливает колебания несущей частоты до необходимой мощности, которые через антенный переключатель и антенну излучаются в пространство. Отраженный от цели сигнал принимается антенной, усиливается в усилителе высокой частоты и подается на фазовый детектор.

Когерентность сигнала обеспечивается тем, что для формирования зондирующих и опорных колебаний используется один и тот же задающий генератор непрерывных колебаний. В фазовом детекторе осуществляется сравнение начальных фаз приходящих радиоимпульсов с фазой опорного колебания.

Если сигнал отражается от неподвижного объекта, то начальные фазы всех отраженных радиоимпульсов ( 0 ) будут одинаковы

, (4.47)

где Д 0 – расстояние до объекта.

Напряжение на выходе фазового детектора будет представлять собой видеоимпульсы одинаковой амплитуды и полярности, определяемыми дальностью до цели.

Если цель движется равномерно, то непрерывно изменяется и сдвиг фаз

,

где FД – допплеровская частота сигнала;

0 – сдвиг фаз при t = 0.

На выходе фазового детектора образуется последовательность видеоимпульсов с изменяющейся амплитудой и полярностью.

Необходимо заметить, что пассивные помехи, в общем случае не являются неподвижными (кроме «местных» предметов), а перемещаются со скоростью ветра ( ), что приводит к пульсации помехи на выходе фазового детектора. Для компенсации пульсаций необходимо частоту опорного сигнала изменять на величину

,

где  Т – изменение сдвига фаз за время периода следования Т.

Однако частота опорного сигнала , и даже промежуточная частота , поэтому в схемах РЛС смещение частот обычно реализуют путем двукратного преобразования частоты. Кроме того компенсацию скорости ветра производят лишь в определенных участках пространства, для чего реализуется стробирование по дальности и угловой координате.

Известны и другие способы компенсации скорости ветра:

  • использование систем обработки с внешней когерентностью;

  • переход к более длинным волнам (метровый диапазон);

  • двухчастотный метод работы РЛС;

  • использование схем ЧПК на видеочастоте.

4.5.1.4.Селекция сигналов движущихся целей

Выше было показано, что физической основой для селекции сигналов движущихся целей является эффект Доплера. При движении воздушного объекта и наличии радиальной составляющей скорости происходит изменение фазы отраженного сигнала относительно излученного. Следовательно, разность фаз сигналов излученных и отраженных, при наличии частоты Доплера, изменяется от периода к периоду (для неподвижных объектов такого нет).

Соотношение фаз сигналов может быть выявлено фазовым детектром. На рис.4.83 изображены сигналы на выходе фазового детектора для неподвижных и подвижных объектов.

Сравнивая импульсы движущихся и неподвижных объектов, можно сделать заключение, что основным отличием временных функций, соответствующих этим последовательностям, будет наличие переменной составляющей в сигнале движущегося объекта.

Следовательно, для селекции движущихся целей необходимо компенсировать на выходе фазового детектора импульсные последовательности с постоянной амплитудой или подавлять в спектре сигнала все гармоники частоты повторения nFn.

Структурную схему системы СДЦ можно представить в виде, изображенном на рис.4.84.

Система состоит из двух частей: когерентно-импульсной аппаратуры (КИА) и компенсационной аппаратуры (КА). Основу КИА составляют фазовый детектор и когерентный гетеродин (рис.4.85).

Компенсационная аппаратура (рис.4.86) обеспечивает сравнение амплитуд сигналов через период повторения импульсов (метод сравнения по огибающей), что сводится к череспериодной компенсации.

Сигналы после фазового детектора без задержки (прямой канал) и с задержкой на период повторения (задержанный канал) поступают на устройство вычитания (УВ), так что образуется функция

.

При вычитании одинаковые по амплитуде импульсы компенсируются, а импульсы разной амплитуды дают нескомпенсированные остатки. Полярность остатков различна и при дальнейшей обработке в двухтактном детекторе (Д) формируется последовательность импульсов одной полярности.

Оптимальная характеристика для приема сигнала на фоне небелого шума определяется следующим образом

(4.48)

где g(f) – спектральная плотность мощности сигнала;

N(f) - спектральная плотность мощности шума;

- частотная характеристика фильтра.

Условия оптимальной обработки могут быть реализованы, если последовательно включены оптимальный фильтр для одиночного импульса пачки, гребенчатый фильтр накопления и гребенчатый фильтр подавления составляющих спектра помехи (рис.4.87).

Первые два фильтра обеспечивают оптимальную обработку импульсов пачки на фоне белого шума, последний режекцию помехи. Порядок включения фильтра ГФН и ГФП может быть изменен, так как произведение амплитудно-частотных характеристик при этом не меняется. С выхода фильтров напряжение подается на детектор.