Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций Системы и сети связи с ПО.doc
Скачиваний:
86
Добавлен:
17.11.2019
Размер:
4.94 Mб
Скачать

4.2. Радиолинии пакетной связи

При осуществлении пакетной связи обмен информацией проводится в соответствии с протоколом АХ.25, представляющим собой переработанную специально для радиосетей версию протокола Х.25 кабельных коммутационных сетей. Протоколы обмена содержат семь уровней. Процедуры работы по радиоканалу описываются во втором уровне, который реализуется специальным контроллером пакетной связи (TNC), размещенным между компьютером и приемопередатчиком [25].

Протокол обмена АХ.25 обеспечивает многостанционный (множественный) доступ канала связи с контролем занятости. Все станции считаются равноправными. Прежде чем включиться в работу TNC станции проверяет, свободен ли канал и, если канал занят, то проверка осуществляется до тех пор, пока он не окажется свободным, и лишь поле этого станция включается на передачу.

При пакетной связи сообщения передаются блоками - ядрами. Кроме информации в кадре содержатся данные о назначении кадра, адресах отправителя, получателя и ретранслятора, через которые должно пройти сообщение, а также данные о контрольной сумме, позволяющей проверить правильность принятых кадров.

Формат кадров. Каждая законченная часть информации представляет собой кадр. Он имеет определенный формат.

Каждый кадр (рис. 4.2) начинается с уникальной последовательности бит 01111110, которая называется флагом и позволяет распознать начало кадра. Далее идут адресное поле размером от 14 до 70 байт, управляющее - 1 байт, информационное - от 0 до 256 байт, контрольное - 2 байта.

Рис. 4.2

При использовании сетевого третьего уровня протокола образуется дополнительное идентификационное поле, которое выступает как часть информационного поля. Заканчивается кадр также флагом.

Флаговое поле. Как уже было отмечено, флаговое поле представляет собой уникальную последовательность бит 01111110. Если далее в кадре встретится такая же последовательность, то для того, чтобы корреспондент ее не принял за признак окончания пакета, после пятого бита вставляется ноль.

Адресное поле (рис. 4.3). Оно может содержать от двух до десяти радиолюбительских позывных. Простейший случай - два позывных, если два корреспондента работают между собой непосредственно. Если эти корреспонденты находятся вне зоны радиовидимости, то они могут использовать станции других операторов в качестве ретранслятора. В одной линии их может быть до восьми. Позывные ретрансляторов также входят в адресное поле. Таким образом, оно делится на три подполя: получателя, отправителя и ретранслятора. Позывные, занесенные в него, могут состоять не более чем из шести символов. Если позывной состоит менее чем из шести символов, то он дополняется соответствующим количеством пробелов.

Рис. 4.3

После позывного в каждом подполе идет вторичный идентификатор станций. Это некоторое число от 0 до 15. Оно обозначает, что оператор имеет несколько станций пакетной связи, аппаратуру BBS, а также NET/ROM. Обычно сам оператор работает с позывным без номера или с номером один. К позывному "почтового ящика" и узловой станции дополнительно прибавляются цифры от двух до девяти, а при прохождении сигнала транзитом через NET/ROM - от 10 до 15 в зависимости от того, через сколько узловых станций прошел пакет.

Число идентификатора в двоичном виде занимает четыре бита со второго по пятый в байте, следующем после каждого позывного. На рис. 4.3 эти биты обозначены как SSID (SECONDARY STATION IDENTIFIER). Первый бит этого байта используется как признак конца адресного поля. Если он обозначен единицей, то это признак последнего байта адресного поля. Для шестого и седьмого битов нет определенного назначения, и они могут использоваться в локальных сетях по договоренности пользователей. Восьмой бит в подполе отправителя и получателя устанавливается в ноль. В подполе ретранслятора его обозначают единицей, если пакет прошел через ретранслятор, и нулем, если нет.

Установление бита ретранслятора необходимо для того, чтобы ретрансляторы, находящиеся в зоне радиовидимости друг друга, следовали очередности передачи пакетов через себя и выполняли эту процедуру строго в порядке, заданном отправителем пакета.

Управляющее поле. В нём содержится информация кадра, которая используется для определения назначения сообщения. Все кадры пакета можно разделить на три основных типа: I -информационные кадры, содержащие символьную или цифровую информацию; S - служебные, подтверждающие, что кадр принят, или содержащие запрос на выдачу очередного информационного кадра; ненумерованные кадры - запрос на соединение-разъединение. К этому типу относятся и сигналы маяков.

Кроме того, в этом поле записан номер отправляемого кадра или при подтверждении о получении сообщения номер следующего кадра, который готов принимать TNC корреспондента. Подобная нумерация введена потому, что через канал может подряд передаваться несколько кадров от одного до семи , и она может помочь разобраться при сбое. Если произойдет ошибка в каком-либо из кадров, то контроллер получателя сообщит контроллеру отправителя о том, что он готов к приёму того номера кадра, который еще не принят или был принят с ошибкой. Например, одна станция отправила другой подряд четыре пакета и при приеме третьего произошла ошибка, в этом случае контроллер получателя сообщит отправителю: "готов к приему третьего пакета".

Информационное поле. В нем размещается поле, информация объемом 256 байт, представленная в кодах, которая при приеме корреспондентами отображается на экране дисплея ЭВМ.

Иногда первый бит информационного поля выступает в качестве самостоятельного подполя - идентификатора протокола. Это происходит в случае использования третьего (сетевого) уровня при прохождении пакета через NET/ROM.

Контрольное поле служит для проверки правильности радиообмена. Оно представляет собой шестнадцатиразрядное число, которое подсчитывается с помощью полинома X16+X15+X2+1 в соответствии с алгоритмом HDLC (Hiqht Level Data Link Central Procedures).

TNC отправителя просчитывает контрольную сумму по всему кадру и помещает ее в конец кадра. На приемном конце по тому же алгоритму она просчитывается вновь и сверяется с суммой, помещенной в конце кадра. Если эти два числа совпадают, то кадр считается принятым верно.

Существуют два способа подсчета контрольной суммы: аппаратный и программный. При аппаратном способе кадр проходит через некоторое устройство (сумматор), в результате чего в его регистре оказывается записанным число, которое и является контрольной суммой. При программном способе подсчет контрольной суммы выполняется с помощью специальной про­граммы. При этом кадр сначала полностью принимается в оперативную память, а затем производится подсчет. Первый способ реализует высокое быстродействие, но требует дополнительных аппаратных средств. Второй способ имеет низкое быстродействие, но дополнительных аппаратных затрат не требует.

Структура станции (рис. 4.4) пакетной связи, реализующая протокол АХ.25, содержит компьютер, модем TNC, приемопередатчик и антенно-фидерное устройство А. При работе на станции пакетной связи оператор набирает информацию на клавиатуре, а получает ответы в виде символов на экране монитора. Информация, передаваемая оператором, может быть командой для TNC или текстом.

После нажатия на клавишу компьютер определяет код, соответствующий этой клавише, и посылает его по последовательному каналу. Обмен по этому каналу происходит побайтно. Вид передаваемого байта показан на рис. 4.5. Некоторые параметры, которые характеризуют передаваемый байт, могут быть различными, но необходимо, чтобы параметры, установленные в

Стартовый бит Стоповые биты

Рис. 4.4

TNC и в компьютере, совпадали. Их характеризуют следующие параметры: длина информационного слова (7 или 8 бит), наличие проверки на четность или нечетность, стартовый бит (один), стоповым бит (один, полтора или два), скорость обмена (50, 75, 150, 300, 1200, 2400, 4800 или 9600 бит/с).

Рис. 4.5

Уровни напряжений, используемых в данном интерфейсе: единица - от +З до +12 В, ноль - от -3 до -12 В. Информация в направлении от компьютера передается по линии TXD, а в обратном направлении - по линии RXD. Кроме того, существуют еще две дополнительные линии CTS и RTS, по которым подается сигнал о готовности компьютера или TNC к приему очередного байта. Преждечем передать байт по линии TXD, компьютер проверяет линию CTS. Если на ней уровень сигнала характеризует готовность TNC к приему байта, то компьютер посылает его, если нет, то ожидает изменения уровня. Аналогичную процедуру производит TNC с использованием линии RXD для передачи информационного байта и линии RTS для проверки готовности.

Последовательность нескольких байт, поступивших в TNC, может быть либо командой, либо информацией, предназначенной для отправления по радиоканалу. В первом случае команда декодируется и исполняется, во втором - формируется кадр в соответствии с протоколом АХ.25 и переводится из стандартного кода в код NRZ-1 (Nопе Return to Zeroinverted). В этом стандарте предусмотрено, что перепад физического уровня сигнала происходит в том случае, если в последовательности передаваемых бит встречается ноль. Временная диаграмма, поясняющая этот процесс, показана на рис. 4.6, где показана исходная посылка, и она же в виде кода NRZ-1.

О бычно модем конструктивно выполняется в одном корпусе с TNC. Его цифровую часть, как правило, называют ассемблером-дизассемблером кадров. Ассемблер-дизассемблер кадров и модем связаны между собой четырьмя линиями: TXD - для передачи кадров в коде NRZ-I, RXD - для приема кадров в коде NRZ-1, РТТ -для включения модулятора и DCD, по которой подается сигнал с демодулятора о занятости канала.

РИС. 4.6

Модем представляет собой совокупность двух устройств: модулятора и демодулятора. Перед отправлением пакета ассемблер-дизассемблер кадров включает модем с помощью сигнала на линии РТТ и по линии TXD посылает кадр в коде NRZ-1. Модулятор производит заполнение полученной последовательности двумя звуковыми частотами. Единица соответствует частоте F1, а нуль - частоте F2. Сигнал, промодулированный звуковой частотой, по линии MIC поступает на микрофонный вход передатчика.

При приеме кадров последовательность импульсов, заполненных звуковой частотой, с выхода приемопередатчика по линии EAR поступает на вход демодулятора. Демодулятор производит обратный процесс: из последовательности импульсов звуковой частоты выделяет огибающую, которая и представляет собой кадр в виде кода NRZ-1. Этот кадр поступает в ассемблер-дизассемблер пакетов. При появлении в канале сигнала, промодулированного одной из частот F1 или F2, специальный детектор формирует на выходе сигнал, свидетельствующий о занятости канала.

Сигнал РТТ кроме включения модулятора выполняет еще одну функцию - управляет транзисторным ключом, который переключает приемопередатчик с приема на передачу.

В пакетной связи используются два типа модемов: для коротких и ультракоротких волн. На коротких волнах используется однополосная модуляция, а скорость передачи по радиоканалу 300 бит/с, при этом разнос звуковых частот, соответствующих нулю и единице, должен составлять 200 Гц. В Европе приняли стандарт, по которому установлено, что нулю соответствует частота модуляции 1350 Гц, а единице - 1650 Гц.

На ультракоротких волнах (УКВ) работают на скорости передачи 1200 бит/с при разносе частот 1000 Гц. Так как в диапазоне УКВ используется частотная модуляция, то частоты строго фиксированы. Принято, что нулю соответствуют 1200 Гц, а единице - 2200 Гц.

Встроенный в модем контроллер осуществляет функции управления радиостанцией. Процесс управления передачей в последовательной линии RS 232 происходит по протоколу АХ.25 сигналами RTS/CTS. В модемах имеются микросхемы ПЗУ с прошивками установок протокола АХ.25 (табл. 4.1). Протокол АХ.25 передачи данных обеспечивает помехоустойчивое кодирование и полную достоверность передаваемой информации за счет того, что выполняется следующее:

  • радиосредства постоянно контролируют занятость эфира и осуществляют передачу пакетов данных только при отсутствии в эфире сигналов и помех;

  • если проверка правильности передаваемой цифровой информации дает отрицательный результат, то производится повтор передачи "испорченного" радиопомехой пакета данных.

Таблица 4.1

Установки

Описание установок и их параметров

Ax25l2v2

ON OFF

Версии протокола AX25 LEVEL2

TNC использует версию 2.0 TNC использует версию 1.0

Ackprior

ON OFF

Приоритетный доступ к каналу

— включен —выключен

ACKTime

N

Время передачи данных в канал

В десятках миллисекунд (14 - по умолчанию)

Autolf

ON OFF

Символ перевода строки

Посылается после символа возврата каретки Не посылается

Awlen N

Количество разрядов данных в слове

7 или 8 (8 - по умолчанию)

AXDelay N

Задержка включения речевого репитера

0 - 180 в десятках миллисекунд (0 - по умолчанию)

AXHang

N

Время зависания речевого репитера

0 - 20 в сотнях миллисекунд (0 - по умолчанию)

Beacon

every N after N N

Позволяет посылку флага, передается первый фрейм

Посылает флаг через регулярные интервалы

Однократно после пакетной пассивности

0-250 в десятках секунд (0 - по умолчанию, убирает флаг)

BBSmsgs

OFF ON

Отображение определенных сообщений

Выключено Включено

Bkondel

ON OFF

Отображение и удаления символа на дисплее

Если удален символ, то BACKSPACE, SPACE Если удален символ, то BACKSLASH, \

Btext

пробел text

Достаточная порция данных пакета флага

Данные отсутствуют

Любая комбинация символов до 120 символов Флаг не посылается, если Btext 0

Budlist

OFF ON

Игнорирование отображения фреймов от станции

— из LCALLS списка

— не из LCALLS списка

Cbell

OFF ON

Возможность звукового сигнала

Отсутствует Имеется

Check N

Время задержки соединения-рассоединения

0 - 250 в десятках секунд (12 - по умолчанию)

CLKadj

N

Корректирующий фактор программы отсчета реального времени

0 - 65535 (0 - по умолчанию, коррекция не проводится) Относительная тактовая частота = 100 - (9,16667/N)

CMSg

OFF ON

Возможность посылки сообщения, установленного CTEXT

Оператор готов к работе, но сообщение не посылается Оператор не имеет возможности вести беседу

Продолжение табл. 4.1

Установки

Описание установок и их параметров

Cmdtime N

Время перерыва прозрачного режима

0 - 250 в единицах секунд (1 - по умолчанию)

CMSGDisc

OFF ON

Возможность прерывания связи другим TNC

Невозможно Возможно

Cpactime

OFF ON

Возможность использования разрывов между пакетами в диалоге

Не используются Используются

CR

ON OFF

Символ CR возврата каретки в пакетах в диалоговом режиме

Добавляется к пакетам Не добавляется к пакетам

Ctext

пробел text

Посылка пакета в диалоговом режиме

Отсутствие сообщения

До 120 символов и пробелов

CANline

N

Возможность вычеркивания строк в CONVERSE режиме

0 - $7F код ASCII для символа убираемой входной строки ($18)

CALSet

N

Калибровка тональных частот TNC

0 - 65535 (87 - по умолчанию)

N = (525000/F)+1 для модуляцииJ4 = (262500/F)+1 для демодуляции

CANPac

N

Изменение командного символа стирания пакета редактирования

0 - $7F код ASCII командного символа ($19 - по умолчанию)

COMmand

N

Переход из диалогового в командный режим

0 - $7F код ASCII для символа ввода командного режима

($03)

CONPerm

OFF

ON

Возможность соединения текущих потоков

Поток может быть подсоединен к (рассоединен от) другим станциям

TNC всегда поддерживает происходящие соединения

CONOk

ON OFF

Реакция TNC на запрос по радио на сообщение

Запросы на соединение будут приняты Запросы на соединение не будут приняты

CONMode

CONVERS TRANS

Установка режима после соединения

Устанавливает диалоговый режим Устанавливает прозрачный режим

CONStamp

OFF ON

Отметка по времени сообщений о состоянии соединения

Не маркируется временными отметками Маркируется временными отметками

DAYUsa

ON OFF

Формат представления даты дисплея TNC

Стандарт США MM/DD/YY Стандарт европейский DD/MM/YY

DEAdtime

N

Время ожидания приоритетного квитирования

(33 - по умолчанию)

Продолжение табл. 4.1

Установки Описание установок и их параметров

NULf

OFF ON

Передача символов NULL ($00)

Не посылается к терминалу следом за символом LR Посылается к терминалу следом за символом LR

NULLs

N

Количество символов NULL после CR или LR

0 - 30 (0 - по умолчанию)

Paclen

N

Максимальное количество байтов данных в пакете

0 - 255 (128 - по умолчанию) Значение 0 эквивалентно 256

PARity

N

Контроль четности для перемещения данных терминала

0 - 3 (3 - по умолчанию)

1 - по нечетности, 3 - по четности, 0 и 2 - нет контроля

PASs

N

Выбор кода символа для прохода входной редактирующей команды

0 - $7F ($16 - по умолчанию)

PASSAll

OFF ON

Реакция TNC на нарушения в пакетах, например, из-за помех, шумов

TNC принимает только пакеты с ненарушенным CRC TNC принимает пакеты с нарушенными CRC-полями

PACTime

AFTER

EVERY N

Пакетная пауза прозрачного режима

Пауза после N*10 мс после момента отсутствия входных данных

Пауза через каждые N*10 мс

0 - 250 в сотнях миллисекунд (AFTER 10 - по умолчанию)

Retry

N

Разрешение на повторы передачи пакетов

0 - 15 (10 - по умолчанию) количество повторов

REDisplay

N

Изменение входного редактирующего символа отображения строки

0 - $7F ($12 - по умолчанию)

RESptime

N

Минимальная задержка для посылки подтверждающего пакета

0 - 250 в сотнях миллисекунд (5 - по умолчанию)

RXblock

OFF ON

Формат данных, посылаемых к терминалу

Стандартный формат для данных TNC

Формат RXBLOCK для данных абонента (случай почтового

ящика)

Screenln

N

Ширина экрана или листа терминала

0 - 255 символов (80 - по умолчанию)

SLOts

N

Номер слота

0 - 127 (3 - по умолчанию)

STOp

N

Выбор символа установления паузы выдачи выходных данных от TNC к терминалу

0 - $7F ( $13 - по умолчанию )

Если 0, то TNC реагирует только на установки ПЗУ

Заключение

В рамках настоящего учебного пособия, состоящего из трех частей, невозможно было достаточно подробно изложить все аспекты, принципы построения и номенклатуру существующих телекоммуникационных систем. Поэтому авторы ограничились изложением лишь общих вопросов построения наиболее используемых и перспективных систем радиосвязи, реализующих основные тенденции развития телекоммуникаций - глобализацию и персонализацию предоставления услуг связи.

Приведенный в пособии материал свидетельствует о том, что за последние годы системы радиосвязи по существу превратились в высокоразвитые интеллектуальные пространственно-

распределенные структуры массового обслуживания, использующие сетевые принципы построения, и их дальнейшее совершенствование и развитие связывают с решением ряда задач, главными среди которых являются задачи обеспечения глубокой интеграции всех видов связи и задачи надежного обеспечения необходимого трафика в условиях существенного возрастания объемов информационных потоков и числа абонентов. Решение первой группы задач неразрывно связано с необходимостью совершенствования методов частотно-территориального планирования, методов обеспечения электромагнитной совместимости, создания эффективных универсальных протоколов обмена информацией между различными системами. Решение второй группы задач в условиях существенной нестационарности и случайного характера трафика, а также ограниченности ресурса системы требует использования оптимальных методов сетевых технологий, совершенствования маршрутизаторов и других сетевых элементов и устройств.

Понятно, что решение этих, а также большинства других задач, связанных с совершенствованием и дальнейшим развитием радиосистем связи, возможно лишь на основе использования и совершенствования цифровых методов и устройств обработки информационных потоков. Вот почему цифровые системы связи уже в настоящее время не только успешно конкурируют с аналоговыми, но и начинают все больше и больше заполнять мировое информационное пространство.

Лекция 11-12

Основные положения концепции ССПС 3G

Сравнение возможностей предоставляемых услуг всех поколений ССПС Стандарты CDMA-2000

Основные положения концепции ССПС 3G

Главное отличие 3G от эксплуатируемых сейчас сетей второго поколения (2G) -передача большого объема информации на высоких скоростях. Это переводит связь на новый качественный уровень. С одной стороны, абонент получает в свое распоряжение полноценный доступ в Интернет, видеоконференц-связь и прочие блага. С другой -оператор начинает зарабатывать не только за счет предоставления услуг связи, как это происходит сейчас, но и за счет разнообразного контента - полезной информации и сервисов.

Возможности сетей 3G открывают новые горизонты в использовании мобильной связи, причем как частным абонентам, так и крупным корпорациям. Изменится само понятие мобильного телефона, он станет многофункциональным устройством, предназначенным для всех случаев жизни.

Помимо уже упоминавшихся услуг доступа в Интернет и видеоконференц-связи, клиенты 3G смогут воспользоваться удаленным доступом к корпоративной сети. Третье поколение сотовой связи в корне изменит такое понятие, как мобильная работа. Сотрудник сможет выполнять свои задачи в любом месте, даже не выходя из дома. Представьте себе, что вы находитесь в поезде, который мчит вас в незнакомый город, и при этом проводите видеоконференцию со своими коллегами или получаете всю информацию о незнакомом месте, включая подробную карту местности, да к тому же все время остаетесь на связи с коллегами и родными.

Важным элементом услуг 3G станет мобильная электронная коммерция, когда оплатить товары и услуги можно будет с помощью мобильного телефона. Он тем самым превратится в виртуальный кошелек. Кроме того, телефон может стать и персональным мобильным доктором -разработчики всерьез задумываются о запуске такой услуги, как удаленная медицинская диагностика. Безопасность человека и жилища тоже поднимется на новый уровень: 3G позволяет предоставлять услуги, основанные на определении местоположения абонента. И вы никогда не заблудитесь в незнакомом городе. Можно будет наблюдать за домом или офисом, получая изображение от установленной в помещении камеры прямо на дисплей мобильного телефона.

Придумать массу полезных решений на основе сетей 3G не сложно. Скажем, крупную мерчандайзинговую компанию заинтересует возможность снабдить своих торговых агентов телефонами 3G в комплекте с мини-ПК. Благодаря чему они, приехав в любой магазин, смогут с помощью телефона 3G подключиться к локальной сети компании, посмотреть запасы на складе и заказать необходимое количество товара.

В настоящее время в Международном союзе электросвязи (МСЭ) завершается процесс стандартизации новых технологий, участие в которой принимали многие региональные и национальные организации Европы, Северной Америки и Азиатско-Тихоокеанского региона. После ряда безуспешных попыток выработать и согласовать единые требования к системам 3-го поколения МСЭ решил подойти к этой проблеме с других позиций. Суть новой концепции состоит в сохранении идеи глобального роуминга, но лишь в качестве идеологической основы для объединения существующих аналоговых и цифровых сетей с системами, базирующимся на новом семействе стандартов 3-го поколения, которое получило обозначение IFS (IMT-2000 Family of Systems). Приняв как данность не один, а семейство стандартов и отказавшись тем самым от принципа глобального международного стандарта, МСЭ активизировал свои усилия на их гармонизации.

Для начала рассмотрим основные стандарты сотовой связи, на основе которых строиться сети связи третьего поколения.

Стандарт CDMA - Code Division Multiple Access - множественный доступ с кодовым делением. В CDMA системах каждый голосовой поток отмечен своим уникальным кодом и передается на одном канале одновременно со многими другими кодированными голосовыми потоками. Принимающая сторона использует тот же код для выделения сигнала из шума. Единственное отличие между множественными голосовыми потоками это уникальный код. Канал, как правило, очень широк и каждый голосовой поток занимает целиком всю ширину диапазона. Эта система использует наборы каналов шириной 1.23МГц. Голос кодируется на скорости 8.55кбит/с, но определение голосовой активности и различные скорости кодирования могут урезать поток данных до 1200бит/с. В системах CDMA могут установливаться очень прочные и защищенные соединения, несмотря на экстремально низкую величину мощности сигнала, теоретически - сигнал может быть слабее чем уровень шума.

WCDMA (Wideband Code Division Multiple Acces) - Широкополосный многостанционный доступ с кодовым разделением каналов. Сети WCDMA надстраиваются над существующими сетями GSM. При этом сети работают параллельно: старые пользователи сети используют сеть GSM, а новые в зависимости от ситуации -GSM либо WCDMA. Абонентский терминал автоматически переключается между сетями, причем возможно переключение с одной сети на другую без обрыва связи. Главным преимуществом WCDMA перед GSM является высокая скорость передачи данных - теоретически до 2 Мбит/с, реально достижимая 384 Кбит/с (для сравнения максимальная теоретически достижимая скорость GPRS 115 Кбит/с, расчетная 64 Кбит/с, а практически достижимая 48 Кбит/с). Кроме того, возможна мобильная видеотелефонная связь и загрузка полноценных аудио и видеофайлов на мобильный терминал. Поддержка WCDMA увеличивает стоимость телефона. На сегодняшний день сети третьего поколения работают в России в тестовом режиме на ограниченной территории.

UMTS (Universal Mobile Telecommunications System), Универсальная Система Мобильных Телекоммуникаций - это один из стандартов, разрабатываемый Европейским Институтом Стандартов Телекоммуникаций (ETSI) для внедрения 3G в Европе. Сегодня основным фактором, определяющим развитие мобильной связи, является голосовая телефония. Появление GPRS и EDGE, а затем переход к UMTS открывают дорогу ко многим дополнительным возможностям помимо голосовой связи. UMTS - это высокоскоростная передача данных, Мобильный Интернет, различные приложения на основе Интернета, интранета и мультимедиа. Ключевой технологией для UMTS является Широкополосный Многостанционный Доступ с Кодовым Разделением (WCDMA). Эта революционная технология радиодоступа, выбранная в сентябре 1998 года Европейским Институтом Стандартов Телекоммуникаций, поддерживает все мультимедийные услуги 3G. Системы WCDMA/UMTS включают усовершенствованную базовую сеть GSM и радиоинтерфейс по технологии WCDMA. Скорость передачи в радиоканале для мобильного абонента достигает 2 Мбит/с. WCDMA предназначена для использования в системах, работающих в частотном диапазоне 2 ГГц, который позволит в полной мере использовать все преимущества этой технологии. Например, всего одна несущая WCDMA шириной 5 МГц обеспечит предоставление смешанных услуг, требующих скоростей передачи от 8 кбит/с до 2 Мбит/с. А мобильные терминалы, совместимые с WCDMA смогут в соответствии с рекомендациями ITU работать сразу с несколькими услугами.

Сравнение возможностей предоставляемых услуг всех поколений ССПС

Поколения мобильной связи: "первое" (1G), "второе" (2G, 2.5G), "третье" (3G). Cравнение возможности всех поколений приведено в таблице 15.

В наборе услуг третьего поколения добавляются видеотелефон, видеоконференции, видео-почта, высокоскоростной доступ в Интернет, TV/видео плеер, удаленная медицинская диагностика, обучение, автомобильная и городская навигации, видео/фото съемка. Существенно возрастает скорость передачи данных.

Таб.15

Поколе ние

1G

2G

2.5G

3G

Время

использ

ования

80-90 гг.

до 2000

2001-2002

с 2003

Услуги

Телефон

(аналогов ая

передача речи)

Телефон (цифровая передача речи)

Прием/отпр авка

коротких электронны х сообщений □ Игры

Голосовая почта

Интернет

□ Телефон (цифровая передача речи)

□ Конференции

Прием/отправка

длинных

электронных сообщений

Прием/отправка звуков, картинок

Прием/отправка факсов

□ Голосовая почта

□ Интернет

□ Услуги, основанные на местонахождении клиента

□ Мобильный банкинг

□ Радио/MP3 Плеер, Караоке

□ Мульти-игры

□ Фото съемка

□ Телефон (цифровая передача речи)

□ Видеотелефон

□ Конференции

□ Видеоконференции

□ Прием/отправка электронных сообщений

□ Прием/отправка звуков, картинок

□ Прием/отправка факсов

□ Голосовая почта

□ Видео почта

□ Высокоскоростной доступ в Интернет

□ Услуги, основанные на местонахождении клиента

□ Мобильный банкинг

□ Радио/УП^ Плеер, Караоке

□ Мульти игры

□ TV/Видео Плеер

□ Удаленное медицинская диагностика, обучение

□ Автомобильная навигация, городская навигация

Видео/фото съемка

Переда ча

данных

от 9.6Кбит/с до

14.4Кбит/с

от 57.6Кбит/с до 115Кбит/с

от 144КБит/с до 2Мбит/с_

Стандарты CDMA-2000

CDMA-2000 - это беспроводный радиодоступ, который, как определил ITU IMT-2000, поддерживает третье поколение услуг сотовой связи 3G.

Изначально, при разработке cdma-2000 закладывались следующие условия:

  • полное соответствие объема и качества услуг связи требованиям ITU к 3G;

  • уменьшение риска и защита капиталовложений операторских компаний;

  • облегчение работы операторским компаниям по развертыванию сетей.

Сотовые сети cdma-2000 полностью совместимы с цифровыми сетями cdmaOne (IS-95), что и обеспечивает простой и недорогой переход к новому поколению беспроводной связи и, тем самым, обеспечивает защиту капиталовложений операторских компаний.

Сотовые сети cdma-2000 предлагают значительное улучшение качества звука и увеличение емкости звуковых каналов при высокой скорости и мультимедийности передачи данных. Эволюционный переход к cdma2000 подразделяется на две фазы, известные как 1X и 3X. Чтобы реализовать эволюционный переход к IMT-2000 в полосе частот 1,25 МГц рассматривается еще одна фаза развития стандарта 1XEV, которая позволяет расширить возможности cdma2000 свыше 1X. На состоявшемся этим летом в Гонконге Конгрессе CDMA были приняты требования к этому стандарту, ранее собранные операторами всего мира и обобщенные CDG.

CDMA-2000 1X. Сети cdma-2000 1X функционируют в той же полосе частот, что и сети cdmaOne, но они обладают в 2 раза большей пропускной способностью голосовых каналов и скоростью передачи данных в 144 Кбит/с. Сети cdma-2000 1X и cdmaOne полностью совместимы, их следует рассматривать как дальнейшее усовершенствование одной сети другой. TIA опубликовал cdma-2000 1Х как стандарт IS-2000. Название 1Х происходит от технического термина 1XRTT, который относится к сетям cdma-2000, занимающим в спектре частот полосу 1,25 МГц. 1Х означает технологию радиопередачи в полосе 1,25 МГц. 1Х может занимать полосу 1,25 МГц в различных участках частотного спектра.

CDMA-2000 1XEV. Данный стандарт является дальнейшим усовершенствованием стандарта 1Х. С его помощью достигается наиболее эффективное использование частотного спектра, увеличивается пропускная способность передачи данных, достигается наивысшая скорость передачи информации от 2 до 5 Мбит/с все в той же полосе частот 1,25 МГц. При этом снижается риск и защищаются капиталовложения операторских компаний. Определившиеся потребности операторов в 1XEV указывают на два этапа усовершенствования. В ходе первого этапа для более эффективного способа передачи информации потребуется достижение скорости передачи данных более 2,4 Мбит/с. В ходе реализации второго этапа достигаются скорости передачи звука и данных в реальном масштабе времени. г.

CDMA-2000 3X. Это вторая фаза стандарта cdma-2000. Усовершенствования в данной фазе обеспечивают увеличение скорости передачи информации свыше того, что достигнуто в 1Х, до 2 Мбит/с с использованием многоканальной системы передачи. Название 3Х происходит от термина 3XRTT, то есть используется три канала по 1,25 МГц для предоставления услуг 3G.

CDMA 450 - стандарт связи третьего поколения. Он утвержден Международным союзом электросвязи, поддерживающим все направления развития CDMA 2000, включая стандарт CDMA 2000 1x EV-DO. Последний позволяет передавать данные в сети с огромной скоростью - до 2, 4 Мб/с.

На сегодняшний день 14 коммерческих сетей стандарта CDMA 450 работают в Узбекистане, России, Румынии, Беларуси, Чехии, Грузии, Латвии и других странах. Готовятся к запуску в эксплуатацию еще несколько сетей. Сейчас стандартом CDMA 450 только в Узбекистане пользуется более 1.000.000 абонентов. Ведущие компании ­производители мобильных терминалов предлагают на выбор потребителю более 15 моделей телефонов.

Стандарт CDMA 450 может быть внедрен даже в такой узкой полосе частот, как 1, 8 МГц. Его преимущество - эффективное использование частотного спектра, а также возможности высокоскоростной передачи данных. А использование более низкого частотного диапазона позволяет расширить зону покрытия: соты, работающие с диапазоном 450 МГц, в два раза превышают зону покрытия базовой станции, работающей в более высоком частотном диапазоне. Поэтому решение CDMA 450 привлекательно для операторов, развертывающих беспроводную связь в сельских регионах, районах с небольшой плотностью населения.

Решение CDMA 2000 в диапазоне 450 МГц может быть основой для предоставления универсальных услуг телекоммуникаций. К примеру, передаче не только голоса, но и данных на всей территории Узбекистана, особенно в удаленных сельских районах. В таком случае связь будет не просто доступной, она распространится на территории, где подобные услуги еще не предоставляются населению из-за высокой стоимости развертывания сети мобильной или фиксированной связи.

Для малонаселенных и труднодоступных районов стандарт CDMA 450 экономически выгоден и является альтернативой традиционной проводной телефонии. Данное решение выгодно для оператора и его абонентов еще и по той причине, что оно предлагает все основные преимущества технологии CDMA 2000, а именно: создает возможность дальнейшего внедрения новых услуг третьего поколения. Например, определение местоположения абонента (LBS). Также возможны мультимедийные услуги, которые уже работают в сети отдельных оператора и технология Рush-to-Таlktm ("нажми и говори", то есть использование телефона в режиме, похожем на пользование рацией).

CDMA 450 - идеальное решение для различных сетевых нужд. Концепция универсальных услуг телекоммуникаций предполагает оказание услуг связи любому пользователю в любом населенном пункте, в заданный срок, с установленными качеством и уровнем цен. Кроме того, на основе CDMA 450 могут быть построены сети спецсвязи в интересах государственных органов. Возможности стандарта CDMA 2000 по высокоскоростной передаче данных представляют для операторов в диапазоне 450 МГц реальный интерес и являются альтернативой широкополосному DSL-доступу.

CDMA 450 позволяет упростить доступ населения к информации (в частности, через Интернет), особенно в удаленных районах, куда стоимость проведения кабеля неоправданно высока.

Использование системы CDMA 450 может стать выгодным решением для систем диспетчерской связи или систем специального назначения, таких как TETRA. Применение функции Рush-to-Таlktm в сочетании с высокой скоростью доступа системы CDMA 450 позволяет быстро и качественно решать задачи полиции, скорой помощи, пожарной охраны и спецслужб.

Использование технологии CDMA 2000, особенно в диапазоне 450 МГц, может существенно облегчить создание системы "электронного правительства". Этот стандарт -превосходный выбор для создания и работы различных приложений в поле зрения Правительства, государственной безопасности. Ведь технология, помимо перечисленных преимуществ, обеспечивает высокую степень защиты информации при передаче с помощью аутентификации, кодирования и обеспечения цельности данных.

Все это делает CDMA 450 идеальным стандартом для применения в различных проектах для Правительства, а также для охраны правопорядка и обеспечения безопасности.

Концепция 4G

В сотовой связи смена поколений выражена четко:

  • 1G (первое поколение) — аналоговая связь;

  • 2G (второе поколение) - цифровой связи с коммутацией каналов;

- 3G (третье поколение) - предусматривает наряду с коммутацией каналов и пакетную передачу данных.

О мобильной связи 3G много говорят как о символе прогресса, однако вперед вырывается уже следующее поколение сотовой связи, именуемое 4G.

К семейству 4G, как правило, относят технологии, которые позволяют передавать данные в сотовых сетях со скоростью выше 100 Мбит/сек. В широком понимании 4G - это название сотовых систем связи, аккумулирующих принципиально новые концепции мобильной связи, такие как пакетная коммутация, многоуровневая модуляция, адаптивная модуляция и кодирование, динамическое распределение частотно-временного ресурса между абонентами сети, IP-интерфейсы, многоантенное разнесение при приеме и передаче, гарантированное поддержание заданного качества соединения и др. В системах связи четвертого поколения передача данных становится основным видом сервиса, а передача голоса реализуется по принципу IP-телефонии на канале передачи данных.

Международный союз телекоммуникаций определяет технологию 4G как технологию беспроводной коммуникации, которая позволяет достичь скорости передачи данных до 1 Гбит/с в условиях движения источника или приемника и до 100 Мбит/с в условиях обмена данными между двумя мобильными устройствами. Пересылка данных в 4G осуществляется по IPv6. Это заметно облегчает работу сетей, особенно если они различных типов. Для обеспечения необходимой скорости используются частоты 40 и 60 GHz.

Создатели приемопередающего оборудования для 4G применили испытанный в цифровом вещании прием — технологию мультиплексирования с ортогональным разделением частот OFDM. Такая методика манипулирования сигналом позволяет значительно уплотнить данные без взаимных помех и искажений. При этом происходит разбиение по частотам с соблюдением ортогональности: максимум каждой несущей волны приходится на тот момент, когда соседние имеют нулевое значение. Этим исключается их взаимодействие, а также более эффективно используется частотный спектр — не нужны защитные «противоинтерференционные» полосы.

Для передачи сигнала применяется модуляция со сдвигом фазы (PSK и ее разновидности), при которой пересылается больше информации за отрезок времени, или квадратно амплитудная (QAM), более современная и позволяющая выжать максимум из пропускной способности канала. Конкретный тип выбирается в зависимости от требуемой скорости и условий приема.

Сигнал разбивается на определенное количество параллельных потоков при передаче и собирается при приеме.

Для уверенного приема и передачи на сверхвысоких частотах планируют применять так называемые адаптивные антенны, которые смогут подстраиваться под конкретную базовую станцию. Но в условиях города таким антеннам в определении правильного направления могут помешать замирания сигнала — его искажения, возникающие в процессе распространения. Здесь выручает еще одна особенность OFDM — стойкость к замираниям (для разных типов модуляции есть свой запас на замирания).

Возможна и работа в условиях отсутствия прямой видимости, что так мешает телефонам стандарта GSM. Недостатки ODFM — чувствительность к доплеровским искажениям и требовательность к качеству электронных компонентов.

В настоящее время в качестве основных кандидатов для построения сотовых систем 4G рассматриваются технологии WiMAX и LTE (рис.11.1), обладающие низкой стоимостью инфраструктуры за счет использования сетей IP, экономией радиочастотного ресурса, высоким качеством связи в городских условиях. Основой физического уровня WiMAX является пакетная передача, адаптивная многоуровневая модуляция и технология OFDMA для организации множественного доступа. Именно эти технологии, в первую очередь, позволяют реализовать революционные возможности по передаче данных

Наиболее технически развитые страны сейчас активно переходят на использование 3G, а во многих сетях уже применяется технология, получившая обозначение 3,5G. В коммерческой эксплуатации уже более 90 соответствующих сетей. Но, по мнению аналитиков телекоммуникационной индустрии, ряд стран, где недавно пришли к необходимости внедрять сети третьего поколения, теперь предпочтет «перескочить» на поколение вперед, начав частичную эксплуатацию 4G.

Еще в 2005 году японская компания NTT DoCoMo сообщила об успехах в работе над новым стандартом беспроводной связи — были проведены удачные эксперименты по передаче данных на скорости 100 Мбит/сек по беспроводным каналам сети 4G. Таким образом, вопреки всем ожиданиям оказалось, что NTT DoCoMo опережает конкурентов по меньшей мере на четыре года. Но только во второй половине 2006 года крупные национальные и международные операторы начали официальное сотрудничество для разработки стандарта 4G.

Рабочая группа Next Generation Mobile Network Cooperation (NGMNC) собрала вместе GSM- и CDMA-операторов со всего мира, чтобы определить их требования к мобильным сетям четвертого поколения. Основными членами группы стали Sprint Nextel, T-Mobile, Vodafone, KPN и Orange, к ним присоединились NTT DoCoMo и China Mobile. Это объединение открыло предприятие в Великобритании, которое в июле 2007 года начала разработку полномасштабной сети с пакетной коммутацией данных. Одной из технологических задач группы является подготовка плавного перехода на 4G со всех 3G-технологий включая UMTS и EV-DO. По словам участников NGMNC, запуск коммерческих сетей на базе нового стандарта намечен на 2010 год.

В Китае, однако, придерживаются других взглядов на развитие технологий сотовой связи. 28 января 2007 года после нескольких месяцев испытаний была официально запущена в шанхайском районе Чангнинг в эксплуатацию первая в мире сеть мобильных коммуникаций четвертого поколения. Система обеспечивает скорость беспроводной передачи данных в 100 Мбит/с, что сопоставимо со скоростью, которую позволяют достичь оптоволоконные технологии, либо медные кабели на коротких расстояниях. Нужно заметить, что исследовательский проект по переходу от 3G к 4G был запущен Китаем еще в 2001 году. Запуск действующей системы обошелся в $19,2 млн. Широкое внедрение 4G, как пологают, начнется в 2008 года в Пекине.

В Европе также готовятся к запуску первые сети мобильной связи четвертого поколения. О своем участии в проекте LTE (Long-Term Evolution) заявили крупные европейские операторы T-Mobile International, Orange и Vodafone Group, а также производители мобильного оборудования Alcatel-Lucent, Nokia Siemens Networks, Nortel Networks и Ericsson. Тестовый запуск LTE начался в мае 2007 года, а в коммерческую эксплуатацию первые сети предполагаются запустить в 2009-2010 годах. Эксперты полагают, что к этому сроку можно развернуть сети 4G, но покрытие базовых станций будет скорее «очаговым».

Специалисты также уверены, что вряд ли услуги 4G станут популярными у европейских абонентов в ближайшие годы. Ведь даже сейчас, через пять лет после запуска первых сетей третьего поколения 3G в Европе, они используются менее чем на половину своих возможностей. Аналитики связывают это с завышенными тарифами на услуги связи третьего поколения. Таким образом, важную роль в успехе 4G будет играть ценовая политика европейских операторов. Ведь, на самом деле, далеко не все пользователи заинтересованы в высокоскоростном мобильном Интернете и связанным с ним услугах — большинству нужна обычная голосовая связь. Учитывая проблемы 3G, влияние технологий связи четвертого поколения на рынок телекоммуникационных услуг в Европе станет заметным лишь к 2020 году, прогнозируют пессимисты.

Сейчас в США оператор мобильной связи Nextel рассматривает возможность отказаться от 3G в пользу системы 4G компании Flarion, которая интенсивно раскручивает свое детище. «Проверка жизнеспособности 4G охватит 150 базовых станций в крупнейших городах юга Америки», — сообщает Nextel, расширяя область тестирования. А вот испанская Telefonica не собирается полностью отказываться от внедрения сетей третьего поколения, а только ограничивает масштабы их применения для того, чтобы сконцентрироваться на «прыжке через одно поколение». Только если в Новом Свете востребованы решения компании Flarion, то здесь отдают предпочтение разработкам IPwireless, что очень удобно в сложившейся обстановке, так как используется задел от внедрения 3G.

На Украине в конце 2007 года сразу четыре компании объявили о начале предоставления услуг связи четвертого поколения в нескольких крупных городах. Данные операторы получили лицензии и начали предоставление услуг по технологии Mobile WiMAX. Услуги 4G сегодня в Украине могут предоставляться именно по технологии WiMAX. Остальные технологии прогнозируют появление на рынке лишь в 2009-2010 годах. В Украине среди компаний мобильной связи конкурентным преимуществом обладают CDMA-операторы, поскольку для предоставления услуг нового поколения им не нужно приобретать лицензии на новые частоты: новое оборудование работает на тех же частотах.

В Узбекистане оператор Super iMax к середине 2010 года планирует оказывать услуги мобильной сети WiMax (Wave-2) по всей территории страны. С сентября 2008 года он начал оказывать услуги мобильного широкополосного беспроводного доступа в Интернет по технологии WiMax в Ташкенте. Мобильная сеть действует на основе технологий южнокорейской Posdata, осуществившей поставку трех базовых станций, абонентских устройств и систем управления сетью, поддерживающих работу в диапазоне частот 2.3 Ггц. Сеть фиксированного WiMax построена на базе оборудования BreezeMAX 3500 израильской Alvarion. Компания начала коммерческую эксплуатацию фиксированной сети в четырех регионах страны - Ташкентской, Андижанской, Ферганской и Самаркандской областях.

Эксперты отмечают, что на пути введения в эксплуатацию сетей 4G есть ряд проблем. Во-первых, на рынке нет абонентских устройств. Такие телефоны, если бы существовали, потребляли бы слишком много энергии и не могли бы долго работать на аккумуляторах (сейчас подобные проблемы есть и у 3G-устройств). Во-вторых, скоростной доступ в Интернет и видеосервисы потребуют больших по размеру и более качественных дисплеев, чем те, которые устанавливаются в телефоны сейчас.

Однако главная проблема все же носит принципиально иной характер. Дело в том, что капиталовложения в развертывание сетей четвертого поколения должны быть намного солиднее, чем в 2G и даже в 3G. Между тем, инвесторы, в том числе и венчурные, пока осторожничают — они не уверены в должной экономической отдаче от 4G-проектов. К тому же, некоторые производители предлагают «скрестить» 4G и беспроводные широкополосные сети. В разных ситуациях пользователь будет иметь возможность выбирать наиболее подходящие способы подключения. Но в любом случае в основном варианте использования 4G технология Wi-Fi получит грозного конкурента.

Новые возможности в передаче огромных объемов данных, которые предоставляются технологиями группы 4G, уже сейчас заставляют поставщиков мобильного контента задуматься о расширении своего бизнеса. Если сегодня основным товаром на этом рынке являются мелодии и простенькие игры, то появление 4G сделает намного более актуальным мобильное телевидение, видео по запросу (Video-On-Demand, VOD), «продвинутые» игры и т.п. Кроме того, благодаря 4G станут возможны мобильные видеоконференции (видеочаты) и мобильные peer-to-peer-сети.

По прогнозам исследовательской компании Screen Digest, к 2011 году во всем мире будет насчитываться по меньшей мере 140 млн подписчиков сервисов мобильного телевидения. Ежегодный совокупный доход этого рынка через пять лет достигнет показателя в 4,7 млрд евро. Аналитики полагают, что потенциально сервисы мобильного ТВ могут приносить гораздо большую прибыль, чем игры и музыка для сотовых аппаратов.

Объем рынка мобильных игр в настоящее время составляет порядка 1,6 млрд евро, причем 50% из этой суммы приходится на Южную Корею и Японию. К 2011 году этот рынок увеличится ненамного и будет оцениваться в 2 млрд евро. Причиной столь незначительного роста специалисты Screen Digest называют стремление сотовых операторов сфокусироваться на музыкальных и телевизионных мобильных сервисах, а не на играх. На рынке музыкального мобильного контента в течение следующих пяти лет, напротив, будет наблюдаться взрывной рост. Объем рынка в сравнении с показателями 2006 года увеличится в 8 раз и составит 1,47 млрд евро. Одним из основных факторов роста станет доступность подписных сервисов, которые предлагают пользователям не только аудиотреки, но и сопутствующие (в том числе мультимедийные) материалы. Хотя к 2011 году большинство музыкальных композиций сотовые абоненты будут, как и сегодня, загружать на мобильники с персональных компьютеров.

В Узбекистане в конце 2008 года началось тестирования оборудования кампании Хвуйвей по запуску мобильного телевидения.

Контрольные вопросы

  1. В чем состоят основные положения концепции ССПС 3 G?

  2. Приведите основные характеристики технологии WCDMA. 3.Сравнените возможности предоставляемых услуг всех поколений ССПС. 4.Приведите разновидности стандартов CDMA-2000.

5. В чем состоит особенности стандарта CDMA 450?

6.Концепция 4G

7.Этапы внедрения 4G

8. Существующие проблемы внедрения 4G

Спутниковые системы персональной радиосвязи

Лекция 13-14-15-16

Принципы организации связи и орбиты ИСЗ

Многостанционый доступ в спутниковых системах связи

Бортовая и земная аппаратура систем связи через ИСЗ

Энергетический расчет и качественные показатели спутниковых систем связи

Спутниковые сети VSAT и персональной радиосвязи

Искусственные спутники Земли связного назначения широко используются для передачи различных сообщений, организации ТВ, телефонных, телеграфных и других каналов связи.

Основной принцип создания спутниковых систем связи заключается в размещении ретрансляторов на ИСЗ. Следовательно, спутниковая система связи представляет собой РРЛ (радиорелейные линии) с одной промежуточной станцией, размещенной на ИСЗ (рис.1.5). При построении спутниковых систем связи используются идеи и принципы, реализуемые в РРЛ.

По способу ретрансляции сигнала спутниковые системы делят на системы с пассивной и активной ретрансляцией. Система, которая работает без бортовой аппаратуры, называется системой связи с пассивным спутником, или системой с пассивной ретрансляцией. В этом случае сигналы, посланные с Земли, отражаются поверхностью ИСЗ обратно без предварительного усиления. В качестве пассивных спутников могут использоваться как специальные отражатели различной формы (в виде сферических баллонов, объемных многогранников и др.), так и естественный спутник Земли - Луна. При достаточном усилении земных антенн и высокой чувствительности приемника земной станции (ЗС) этот метод радиосвязи может найти применение в системах с малой пропускной способностью. Пропускная способность подобных систем связи при современном уровне техники не превышает двух - трех телефонных сообщений.

Система радиосвязи при наличии бортовой аппаратуры называется системой с активной ретрансляцией сигнала, или системой с активным спутником. При этом энергоснабжение бортового ретранслятора осуществляется от солнечных батарей, находящихся на ИСЗ. Активная ретрансляция является основной в современных системах передачи.

В настоящее время под спутниковым ТВ и радиовещанием понимается как передача ТВ сигналов (со звуковым сопровождением), так и радиовещательных звуковых сигналов от одного или нескольких земных передатчиков, связанных с центрами формирования ТВ и радиопрограмм, через ИСЗ на сеть земных приемных установок и распределение этих программ с целью доведения их до абонентов (телезрителей или радиослушателей) с помощью наземных средств связи (ретрансляторов различной мощности, СКТВ, средств коллективного и индивидуального приема). Как правило, в зоне обслуживания связным ИСЗ располагается сеть приемных ЗС различных типов. Для обеспечения высокого качества принимаемых ТВ и звуковых сигналов в спутниковых системах связи из-за очень больших расстояний между ЗС и ИСЗ принимают следующие меры:

  1. увеличивают мощность передатчика ЗС до 5... 10 кВт;

  2. усложняют приемопередающие антенны ЗС;

  3. используют малошумящие усилители (смесители на входе приемников);

  4. повышают эффективность приема с ЧМ за счет увеличения девиации частоты.

Классификация и основные показатели ССС. В основу классификации ССС, ориентированных на предоставление услуг радиотелефонной связи и передачи данных, положены следующие признаки:

Тип используемых орбит. По этому признаку все ССС делятся на два класса — системы с космическими аппаратами (КА) на геостационарной орбите (GEO) и на негеостационарной орбите. В свою очередь, негеостационарные орбиты подразделяются на низкоорбитальные (LEO), средневысотные (MEO) и эллиптические (HEO). Кроме того, низкоорбитальные системы связи подразделяются по виду предоставляемых услуг на системы передачи данных на базе little LEO, радиотелефонные системы big LEO и системы широкополосной связи mega LEO (в литературе используется также обозначение Super LEO).

Принадлежность системы к службе. В соответствии с Регламентом радиосвязи различаются три основные службы:

  • фиксированная спутниковая служба (ФСС) - служба радиосвязи между ЗС, расположенными в определенных фиксированных пунктах, при использовании одного или нескольких спутников;

  • подвижная спутниковая служба - между подвижными ЗС с участием одного или нескольких ИСЗ;

  • радиовещательная спутниковая служба (РВСС) - служба радиосвязи, в которой сигналы спутниковых ретрансляторов предназначены для непосредственного приема населением. При этом непосредственным считается как индивидуальный, так и коллективный прием на сравнительно простые и недорогие установки с абонентским качеством.

Статус системы. Зависит от назначения системы, степени охвата обслуживаемой территории, размещения и принадлежности наземных станций. В зависимости от статуса ССС можно разделить на международные (глобальные и региональные), национальные и ведомственные (таб.7.1).

Таб.7.1 Системы, использующие КА на GEO-, MEO- и LEO-орбитах

Показатель

GEO

MEO

LEO

Высота орбиты, км

36 000

5000-15 000

500-2000

Количество КА в ОГ

3

8-12

48-66

Зона покрытия одного КА (угол радиовидимости 50), % от поверхности Земли

34

25-28

3-7

Время пребывания КА в зоне радиовидимости (в сутки)

24 ч

1,5-2 ч

10-15 мин

Задержка при передаче речи, мс

Региональная связь

500

80-130

20-70

Глобальная связь

600

250-400

170-300

Время переключения, мин

с одного спутника на другой

Не

требуется

50

8-10

с одного луча на другой

10-15

5-6

1,5-2,0

Относительный максимальный доплеровский сдвиг

6*10-8

66*10-6

Угол радиовидимости КА на границе зоны обслуживания

5

15-25

10-15

Орбиты ИСЗ

Геостационарная. Большинство существующих ССС используют наиболее выгодную для размещения спутников геостационарную орбиту, основными достоинствами которой являются возможность непрерывной круглосуточной связи в глобальной зоне обслуживания и практически полное отсутствие сдвига частоты, обусловленного доплеровским эффектом.

Геостационарные спутники, располагаясь на высоте примерно 36 тыс. км и двигаясь со скоростью вращения Земли, как бы "зависают" над определенной точкой земной поверхности, которая располагается на экваторе (так называемой подспутниковой точкой). В действительности положение геостационарного КА на орбите не является неизменным: он испытывает незначительный "дрейф" под воздействием ряда факторов, вызывающих деградацию орбиты. При этом изменение положения орбиты за год может достигать 0,92о. Основными параметрами, определяющими угловой разнос между соседними КА, являются пространственная избирательность бортовых и наземных антенн, а также точность удержания КА на орбите.

Связь через геостационарный КА не имеет перерывов в обслуживании, обусловленных взаимным перемещением спутника и наземной станции, а система из трех спутников обеспечивает охват практически всей территории земной поверхности. Орбитальный ресурс современных геостационарных КА также достаточно высок и составляет около 15 лет (табл.7.1).

Однако такие системы имеют ряд недостатков, главный из которых — задержка сигнала. Спутники на геостационарных орбитах оптимальны для систем радио- и телевизионного вещания, где задержки в 250 мс (в каждом направлении) не сказываются на качественных характеристиках сигналов. Системы радиотелефонной связи более чувствительны к задержкам, а поскольку суммарная задержка в системах данного класса составляет около 600 мс (с учетом времени обработки и коммутации в наземных сетях), даже современная техника эхоподавления не всегда позволяет обеспечить связь высокого качества. В случае "двойного скачка" (ретрансляции через наземную станцию-шлюз) задержка становится неприемлемой уже более чем для 20% пользователей.

Архитектура геостационарных систем ограничивает возможность повторного использования выделенных полос частот, а следовательно, их спектральную эффективность. Зона охвата геостационарных КА не включает в себя высокоширотные районы (выше 76,5о с.ш. и ю.ш.), т. е. действительно глобальное обслуживание не гарантируется. Следует также отметить, что геостационарные КА могут обеспечить услуги персональной связи лишь в том случае, если формируемые ими на поверхности Земли зоны обслуживания примерно одинаковы с зонами, образуемыми низкоорбитальными спутниками.

Бурное развитие спутниковой связи, особенно в последнее десятилетие, привело к тому, что на геостационарной орбите стало очень "тесно" и возникли проблемы с размещением новых КА. Дело в том, что в соответствии с существующими международными нормами орбитальный разнос между геостационарными КА должен составлять не менее 1о. Это означает, что на орбите можно разместить не более 360 спутников. Что же касается сокращения углового разноса между точками стояния КА на орбите, то на современном уровне развития техники это невозможно из-за взаимных помех (рис.7.1).

Рис.7.1 ИСЗ на геостационарной орбите.

Примечания.

Н/п - неприменимо,

* здесь и далее в скобках указаны год начала реализации проекта и число участвующих в нем стран.

Средневысотные. Спутники на средневысотных орбитах первыми начали разрабатывать компании, традиционно выпускающие геостационарные КА. Средневысотные системы обеспечивают более качественные характеристики обслуживания подвижных абонентов, чем геостационарные, поскольку в поле зрения абонента одновременно находится большое число КА. За счет этого появляется возможность увеличить минимальные углы видимости КА до 25о — 300о .

Например, радиовидимость двух спутников в системе ICO обеспечивается в течение 95% суточного времени, причем хотя бы один из ее КА виден под углом более 300о. А это, в свою очередь, позволяет снизить дополнительный энергетический запас радиолинии, необходимый для компенсации потерь на распространение в ближней зоне (при наличии в ней деревьев, зданий и других преград).

Однако при выборе местоположения негеостационарной орбитальной группировки (ОГ) необходимо учитывать природные ограничения — это пространственные пояса заряженных частиц, захваченных магнитным полем Земли, так называемые радиационные пояса Ван-Аллена (рис.7.2). Первый устойчивый пояс высокой радиации начинается примерно на высоте 1,5 тыс. км и простирается до нескольких тысяч километров, его "размах" составляет примерно 300 км по обе стороны от экватора. Второй пояс столь же высокой интенсивности (10 тыс. имп./с) располагается на высотах от 13 до 19 тыс. км, охватывая около 500 км по обе стороны от экватора.

Рис.7.2 Уровни радиации в зонах Ван-Аллена: GN - географический север; MN - магнитный север; - относительное расстояние, где Rз (радиус Земли) = 6371 км, R - высота

Трасса средневысотных спутников проходит между первым и вторым поясами Ван-Аллена, т. е. на высоте от 5 до 15 тыс. км. Зона обслуживания каждого КА существенно меньше, чем геостационарного, поэтому для глобального охвата с однократным покрытием наиболее населенных районов Земного шара и судоходных акваторий необходимо создать ОГ из 8—12 спутников. Суммарная задержка сигнала при связи через средневысотные спутники составляет не более 130 мс, что позволяет использовать их для радиотелефонной связи.

Таким образом, средневысотные спутники выигрывают у геостационарных по энергетическим показателям, но проигрывают им по продолжительности пребывания КА в зоне радиовидимости наземных станций (1,5—2 ч).

Вместе с тем, орбитальный ресурс средневысотных КА лишь незначительно меньше, чем у геостационарных. Период обращения спутника вокруг Земли для средневысотных круговых орбит составляет около 6 ч (при высоте 10 350 км), из которых в тени Земли КА находится лишь несколько минут. Это позволяет значительно упростить технологические решения, используемые в бортовой системе электропитания, и, в конечном счете, довести срок службы КА до 12—15 лет.

Системы со средневысотными КА обеспечивают лучшие, чем GEO-КА, характеристики обслуживания абонентов благодаря следующим особенностям. Они имеют большие углы радиовидимости, в зоне радиовидимости находится большее число спутников, а задержка при проведении сеансов связи составляет максимум 130 мс.

Структура систем на средневысотных орбитах (ICO, Spaceway NGSO, "Ростелесат") различается незначительно. Во всех этих системах орбитальная группировка создается примерно на одной и той же высоте (10 352—10 355 км) со сходными параметрами орбит (табл.7.1).

Низкие круговые. В зависимости от величины наклонения плоскости орбиты относительно плоскости экватора различают низкие экваториальные (наклонение 0о), полярные (наклонение 90о) и наклонные орбиты. Системы с низкими наклонными и полярными орбитами существуют уже около 30 лет и применяются в основном для научно-исследовательских целей, дистанционного зондирования, навигации, метеорологических наблюдений, фотографирования поверхности Земли. Для организации мобильной и персональной связи эти системы стали использоваться только в последние 5 —7 лет. Сегодня наиболее интенсивно осваиваются низкие наклонные и полярные орбиты высотой 700—1500 км, а также экваториальные высотой 2 тыс. км.

Спутники на низких орбитах обладают значительными преимуществами перед другими КА по энергетическим характеристикам, но проигрывают им в продолжительности сеансов связи и времени активного существования КА. Если период обращения спутника составляет 100 мин, то в среднем 30% времени он находится на теневой стороне Земли. Аккумуляторные бортовые батареи испытывают приблизительно 5 тыс. циклов зарядки/разрядки в год, вследствие чего срок их службы, как правило, не превышает 5—8 лет.

Выбор диапазона высот от 700 до 2 тыс. км для низкоорбитальных систем неслучаен. С одной стороны, на орбитах высотой менее 700 км плотность атмосферы относительно высока, что вызывает колебания эксцентриситета и деградацию орбиты (постепенное снижение высоты апогея). Кроме того, уменьшение высоты орбиты приводит к увеличению числа штатных маневров для сохранения заданной орбиты, а следовательно, к повышению расхода топлива.

С другой стороны, на орбитах выше 1,5 тыс. км, где располагается первый радиационный пояс Ван-Аллена, длительная работа электронной бортовой аппаратуры практически невозможна, если не использовать специальных методов защиты от радиационного излучения. Применение же этих методов ведет к существенному усложнению бортовой аппаратуры и увеличению массы КА.

Однако чем меньше высота орбиты, тем меньше мгновенная зона обслуживания, а следовательно, для глобального охвата требуется значительно большее количество спутников. Если низкоорбитальная система должна обеспечить глобальную связь с непрерывным обслуживанием, то необходимо, чтобы в орбитальную группировку входило не менее 48 КА. Период обращения спутника на этих орбитах составляет от 90 мин до 2 ч, а максимальное время пребывания КА в зоне радиовидимости не превышает 10—15 мин (таб.7.1).

Эллиптические. Основными параметрами, характеризующими тип эллиптической орбиты, являются период обращения спутника вокруг Земли и эксцентриситет (показатель эллиптичности орбиты) (рис.7.3).

Рис.7.3 ИСЗ на эллиптической орбите.

В настоящее время используются несколько типов эллиптических орбит с большим эксцентриситетом — Borealis, Archi-medes, "Молния", "Тундра" (таб.7 3). Все указанные орбиты являются синхронными, т.е. спутник, выведенный на такую орбиту, вращается со скоростью Земли и имеет период обращения, кратный времени суток.

Таб.7.3 Типы эллиптических орбит и их основные параметры

Для спутников на эллиптической орбите характерно то, что их скорость в апогее значительно меньше, чем в перигее. Следовательно, КА будет находиться в зоне видимости определенного региона в течение более длительного времени, чем спутник, орбита которого является круговой.

Так, выведенный на орбиту КА "Молния" (апогей 40 тыс. км, перигей 460 км, наклонение 63,5о) обеспечивает сеансы связи продолжительностью 8—10 ч, причем система всего из трех спутников поддерживает глобальную круглосуточную связь.

Эллиптические орбиты с более низким апогеем, например Borealis (апогей 7840 км, перигей 520 км) или Archimedes (апогей 26 737 км, перигей 1000 км), предназначены для обеспечения региональной связи.

КА с более низким апогеем выигрывают у спутников на высокоэллиптических орбитах по энергетическим характеристикам, проигрывая им в продолжительности сеансов. Для обеспечения непрерывной круглосуточной связи с использованием синхронно-солнечных орбит Borealis потребуется не менее 8 КА (расположенных в двух орбитальных плоскостях по четыре спутника в каждой плоскости). Они позволят обслуживать абонентов при углах радиовидимости КА не менее 25о.

Системы с КА на эллиптических орбитах также не лишены "природных" ограничений. Постоянство местоположения КА на эллиптической орбите обеспечивается только при двух значениях наклонения плоскости орбиты к экватору — 63,4о и 116,6о. Это объясняется воздействием неоднородностей гравитационного поля Земли, из-за которого большая ось эллиптической орбиты испытывает вращательный момент, что приводит к колебаниям широты подспутниковой точки в апогее. Другой фактор, влияющий на выбор параметров эллиптических орбит, связан с необходимостью учитывать опасные воздействия радиационных поясов Ван-Аллена, которые неизбежно пересекает КА во время своего движения по орбите.

Службы спутниковой связи. Следует отметить, что деление на службы связи, введенное Регламентом Радиосвязи, уже не соответствует реальной структуре современных ССС. Процесс персонализации (т. е. максимального приближения средств связи к конечному пользователю) привел к тому, что границы между традиционными службами ФСС и ПСС или ФСС и РСС постепенно начали стираться. Например, персональные наземные станции удаленных пользователей, работающие в Ku- или Ka-диапазонах, формально относятся к классу ФСС (работа в полосах частот, выделенных для ФСС), но по своему назначению и выполняемым функциям они ближе всего к ПСС. Поэтому следует отдельно рассматривать системы, предоставляющие услуги персональной и широкополосной связи. ОТСЮДА

Фиксированная. Системы ФСС предназначены для обеспечения связи между стационарными пользователями. Первоначально они разворачивались исключительно для организации магистралей большой протяженности и региональной (зоновой) связи. Такие системы на базе терминалов типа VSAT используются в сетях электронной коммерции, обмена банковской информацией, оптовых баз, торговых складов и др. Кроме того, в системах ФСС все чаще применяется оборудование персональной связи и интерактивного обмена информацией (в том числе через Internet). Для систем ФСС выделены следующие диапазоны частот: C (4/6 ГГц), Ku (11/14 ГГц) и Ka (20/30 ГГц).

К разряду ФСС относят также связь по фидерным линиям, которые формируют высокоскоростные каналы между наземными станциями (центральными, сопряжения и др.). Эти каналы работают в тех же диапазонах частот.

Услуги ФСС предоставляют пять крупных международных организаций и около 50 региональных и национальных компаний. К наиболее значительным коммерческим системам фиксированной связи относятся Intelsat, Intersputnik, Eutelsat, Arabsat и AsiaSat. Среди них бесспорным лидером является международная система Intelsat, орбитальная группировка которой охватывает четыре основных региона обслуживания — Атлантический (AOR), Индийский (IOR), Азиатско-Тихоокеанский (ATR) и Тихоокеанский (POR). За 30 лет существования системы Intelsat создано 8 поколений спутников, из которых каждое последующее существенно превосходит предыдущее.

В настоящее время услуги Intelsat обеспечивают спутники четырех последних поколений (серий Intelsat-5, -6, -7/7A, -8). Пропускная способность этих КА составляет от 12 до 35 тыс. телефонных каналов, т. е. через 25 спутников системы Intelsat передаются примерно 2/3 международного телефонного трафика. Наземный сегмент включает в себя около 800 крупных станций, размещенных в 170 странах мира.

Международная организация Intersputnik в настоящее время использует российский космический сегмент (он состоит из КА типа "Горизонт" и "Экспресс"), арендуя около 30 ретрансляторов на 8 КА. В 1999 г. запущен КА нового поколения (LMI — Lockheed Martin Intersputnik) для обслуживание Евро-Азиатского региона (75о в.д.), Америки (83о з.д.), Евро-Африканского (3о в.д.) и Азиатско-Тихоокеанского (130о в.д.) регионов (в скобках приведены точки стояния КА).

Серьезную конкуренцию системам Intelsat и Intersputnik составляют международные коммерческие спутниковые системы PanAmSat и Orion, которые обеспечивает непрерывное покрытие основных регионов Земного шара. К наиболее крупным региональным системам относятся Eutelsat (Европа и Северная Африка), Apstar, Asiasat, Optus, Palapa (Aзиатско-Тихоокенский регион) и Arabsat (Арабские страны).

Подвижная. Системы ПСС появились около 30 лет назад (первая глобальная система мобильной радиотелефонной связи и геостационарный КА Marisat разработаны компанией Comsat в середине 70-х гг.), т. е. значительно позднее, чем системы ФСС. Причиной тому были низкая энерговооруженность подвижных объектов и более сложные условия их эксплуатации (влияние рельефа местности, ограничения по размерам антенн и др.).

Обычные стационарные наземные станции обеспечивают устойчивую связь при рабочих углах радиовидимости даже 5о, а надежную связь для подвижных абонентов можно гарантировать лишь при значительно более высоких значениях. Большие углы радиовидимости КА позволяют снизить энергетический запас радиолинии, предназначенный для компенсации потерь, которые обуславливаются замиранием при распространении радиоволн в ближней зоне со сложным рельефом местности.

Первоначально мобильные наземные станции разрабатывались как системы специального назначения (морские, воздушные, автомобильные и железнодорожные) и были ориентированы на ограниченное число пользователей. Мобильные ССС первого поколения строились с использованием геостационарных КА с прямыми (прозрачными) ретрансляторами и имели низкую пропускную способность. Для передачи информации применялись аналоговые методы модуляции.

Подсистемы ПСС создавались в основном для сетей, имеющих радиальную или радиально-узловую структуру с большими центральной и базовыми станциями, которые обеспечивали работу с подвижными наземными станциями. Потоки в сетях с предоставлением каналов по требованию были невелики, поэтому в них применялись преимущественно одно- или малоканальные наземные станции. Обычно такие сети предназначались для создания ведомственных и корпоративных сетей связи с удаленными и подвижными объектами (судами, самолетами, автомобилями и т. д.), для организации связи в государственных структурах, в районах бедствия и при чрезвычайных ситуациях. Качественный скачок в развитии ПСС произошел не только в связи с внедрением цифровых методов передачи речи и данных (как это принято обычно считать), но и благодаря появлению первых проектов спутниковых систем на базе КА на негеостационарных орбитах (низких круговых и средневысотных). Орбиты таких спутников близки к поверхности Земли, что дает возможность использовать вместо традиционных наземных станций дешевые малогабаритные терминалы и небольшие антенны. Применение низко- и среднеорбитальных группировок не только позволяет решить проблему перегруженности геостационарных орбит, но и существенно расширяет сферу телекоммуникационных услуг спутниковых сетей, обеспечивая пользователей глобальной персональной связью с помощью терминала "телефонная трубка".

Сейчас в мире насчитывается более 30 национальных и международных (региональных и глобальных) проектов, использующих КА на низких орбитах. Наиболее известны Globalstar, Iridium, Orbcomm (США), а также российские "Гонец" и "Сигнал".

Однако переход на низкоорбитальные системы нельзя считать генеральной тенденцией развития мобильной спутниковой связи. Столь же важным фактором в эволюции соответствующих систем станет освоение средних высот. И здесь особо интересны системы связи на средних (ICO) и эллиптических (Ellipso) орбитах. Правда, несмотря на все достоинства последних, традиционные системы, использующие КА на геостационарных орбитах, не собираются сдавать свои позиции, о чем говорят последние разработки, например для Inmarsat и Intelsat.

Отличительными особенностями систем ПСС второго поколения являются:

  • применение цифровых технологий для передачи речи и данных, повышения качества и надежности связи, расширения спектра услуг;

  • интеграция с традиционными наземными системами подвижной связи (в первую очередь — с цифровыми сотовыми);

  • совместимость и взаимодействие сетей подвижной спутниковой радиосвязи с телефонной сетью общего пользования (ТфОП) на любом иерархическом уровне (местном, внутризоновом, междугороднем);

  • многообразие типов абонентских терминалов различных категорий — стационарные, портативные, мобильные, необслуживаемые, приемные и т. д.

Регламентом радиосвязи для систем ПСС выделены диапазоны частот до 1 ГГц, а также полосы частот в диапазонах L (1,5/1,6 ГГц) и S (1,9/2,2 и 2,4/ 2,5 ГГц). В перспективе разработчики систем ПСС намерены использовать более высокочастотные диапазоны Ka (20/30 ГГц) и EHF (40—50 ГГц).

В настоящее время сохраняется деление систем ПСС по видам передаваемой информации на сети радиотелефонной связи (Inmarsat-A, -B и -M, AMSC, MSAT, Optus, AceS) и системы передачи данных (Inmarsat-C, Omnitracs, Euteltracs, Prodat).

Изо всех систем ПСС наиболее мощная орбитальная группировка принадлежит международной системе Inmarsat, которая охватывает четыре региона — Атлантический восточный (AOR-E), Атлантический западный (AOR-W), Индийский (IOR) и Тихоокеанский (POR). Каждый из них обслуживается одним действующим КА и имеет по 1 —2 резервных спутника. Сеть Inmarsat обеспечивает покрытие практически всей поверхности Земли, за исключением приполярных районов.

На первых этапах создания Inmarsat связь организовывалась через арендуемые у других организаций спутники Маrisat, Marecs и Intelsat-5MSC. Сейчас орбитальная группировка Inmarsat состоит из шести спутников Inmarsat (четыре КА типа Inmarsat-2, два — типа Inmarsat-3) и нескольких спутников старого поколения (типа Маrisat и Intelsat-5MCS).

Определенную конкуренцию Inmarsat составляют системы радиотелефонной связи AMSC и MSAT (предоставляют свои услуги в Северо-Американском регионе), ACeS и Optus (Азиатско-Тихоокеанский регион).

Особое место в системах передачи данных занимают сети на базе спутников, называемых little LEO, которые предназначены для передачи данных со скоростью от 1,2 до 9,6 кбит/с. Их отличительными особенностями являются используемый диапазон частот (до 1 ГГц) и легкие КА (50—250 кг). Кроме того, к бортовой аппаратуре little LEO не предъявляются жесткие требования по времени доставки сообщений.

Чтобы осуществить передачу данных, достаточно одного спутника с электронным "почтовым ящиком" на борту. С каждым следующим витком он будет появляться над новым районом Земного шара, обеспечивая глобальное покрытие. Однако качество такого обслуживания будет определяться количеством КА в системе: для передачи данных в режиме электронной почты необходимы от 6 до 48 КА.

Системы этого класса имеют следующие особенности:

  • данные передаются в пакетном режиме (короткие сообщения) с предоставлением каналов по требованию или в режиме группового опроса;

  • возможно применение легких и портативных терминалов с ненаправленными антеннами;

  • возможен групповой вывод КА на орбиту за счет их малого веса;

  • низкие тарифы по сравнению с другими системами передачи данных.

Системы группы little LEO ориентированы на глобальный мониторинг перевозки грузов со сквозным контролем от пункта загрузки до пункта назначения. Они могут определять географические координаты подвижных объектов (долгота, широта, универсальное время, UTC), осуществлять сбор данных об окружающей среде, а также обеспечивать связь с подвижными объектами (судно, автомобиль, вагон, самолет), в том числе двусторонний обмен данными.

В настоящее время развернуты орбитальные группировки двух таких систем — Orbcomm (США) и "Гонец-Д1" (Россия).

Радиовещательная спутниковая служба предназначена для приема телевизионных и радиовещательных программ и является главной службой систем непосредственного телевизионного вещания (НТВ), спутникового телевизионного вещания и спутникового непосредственного радиовещания.

В настоящее время все системы телерадиовещания строятся на базе спутников на геостационарной орбите. В этой области телекоммуникаций, где основное требование к системе — сплошное покрытие обслуживаемых территорий, преимущества ССС перед другими средствами связи проявляются в наибольшей степени.

Одним из важных направлений развития телерадиовещания является интерактивное телевидение, которое позволяет удовлетворить индивидуальные запросы пользователей путем трансляции по спутниковым каналам заказных телепрограмм, а также предоставления возможностей интерактивного обмена в процессе телепередач. В таком случае пользователь из пассивного потребителя вещательной информации превращается в активного участника программы.

Еще одно перспективное направление — прямое спутниковое вещание на компьютеры (служба Direct PC), позволяющее передавать по радиоканалам телевизионные изображения со скоростью до 30 Мбит/с и информацию Internet со скоростью до 400 кбит/с.

Персональная и широкополосная связь обеспечивается многими ССС — как геостационарными (таб. 7.4), так и с КА на более близких орбитах (таб.7.5).

Таб.7.4 Системы высокоскоростной передачи данных с КА на геостационарной орбите

Системы big LEO ориентированы на предоставление персональной радиотелефонной и пейджинговой связи в глобальном масштабе. Общей тенденцией развития таких систем является объединение в общую сеть радиотелефонных спутниковых и сотовых сетей различных стандартов (GSM, AMPS, CDMA и др.), а также предоставление максимально возможного набора услуг (передача данных, телексов, факсимильных коротких сообщений, определение местоположения и пр.).

Таб. 7.5 MEO- и LEO-системы радиотелефонной и широкополосной связи (диапазон частот выше 1 ГГц)

Обслуживание абонентов этих сетей осуществляется в масштабе реального времени, что достигается за счет применения корректируемых орбитальных группировок из 48 - 66 спутников. Для связи с абонентами используются L- и S-диапазоны частот. Масса спутников составляет 300 - 700 кг. Реальная пропускная способность стволов КА, как правило, не превышает 1200 эквивалентных телефонных каналов на КА (пропускная способность эквивалентного телефонного канала — 2,4 кбит/с). К системам big LEO относятся сети Iridium и Globalstar.

Системы с КА на средневысотных орбитах (MEO) являются одним из основных конкурентов сетей класса big LEO. Они ориентированы на один и тот же рынок услуг — глобальную радиотелефонную и пейджинговую связь. Однако если для обеспечения глобальной связи в системах big LEO без межспутниковых линий требуются 150 - 210 наземных станций сопряжения (Globalstar), то в системах MEO достаточно 10 – 12 станций. Пропускная способность систем данного класса эквивалентна 3 - 4,5 тыс. телефонных каналов со скоростью передачи 2,4 кбит/с, что выше, чем в известных низкоорбитальных системах.

Системы широкополосной связи, использующие LEO-, MEO- и GEO-орбиты, предназначены для передачи высококачественной речи, высокоскоростных потоков данных, мультимедийной информации, для доступа в Internet, а также предоставления других видов услуг, пока недоступных абонентам систем ПСС.

Принято считать, что главная услуга широкополосных сетей - обмен данными в интерактивном режиме. По прогнозам, через 10 - 15 лет рынок средств широкополосной связи будет столь же масштабным, что и существующий рынок средств узкополосной связи. Более того, судя по анонсированным характеристикам намеченных к внедрению ССС, они смогут удовлетворить 20 - 30% потребностей этого рынка. Однако реально действующие ССС не обладают пропускной способностью, которая может обеспечить хотя бы минимальные потребности рынка.

Для систем широкополосной связи наиболее характерны два вида обслуживания — персональная связь и организация широкополосных магистралей в сетях различного назначения (в том числе транкинговых или сотовых). Первый тип услуг обеспечивает связь в режиме реального времени с предоставлением каналов по требованию (bandwidth-on-demand) и скоростью передачи информации до 2 - 10 Мбит/с.

Ко второму виду услуг относится передача высокоскоростных потоков информации (155,52 Мбит/с), характерных для сетей синхронной цифровой иерархии (SDN). Конечно, речь идет не о замене волоконно-оптических каналов, а лишь о расширении их возможностей для связи с удаленными пользователями или для разрешения проблемы "последней мили", особенно в труднодоступных районах. Высокоскоростную передачу данных предполагается реализовать в системах, использующих КА как на геостационарной орбите, так и на средневысотных.

Многостанционый доступ в спутниковых системах связи

Многостанционный доступ, это одновременная работа большого числа земных станций через один спутниковый ретранслятор. Он позволяет создать сеть связи, в которой можно организовать как магистральную сеть связи, так и систему связи каждый с каждым. В магистральной сети возможна как одно, так и многоканальная система связи с центром. В общем случае эта задача аналогичная решению задачи в сети ТЛФ связи, т.е. абонент имеет свободный и практически независимый доступ в сеть и с помощью набора номера управляет соединением.

Как и наземные сети, ССС используют различные виды доступа, которые можно разделить на три группы. Первые две - классические методы многостанционного доступа с частотным (FDMA) и временным (TDMA) разделением каналов. К третьей относятся методы, основанные на технологии кодового разделения каналов (CDMA).

Основные требования к системам многостанционного доступа:

  1. Эффективное использование мощности ретранслятора.

  2. Максимально возможное использование полосы частот ретранслятора.

  3. Допустимый уровень переходных помех.

  4. Гибкость системы с помощью управления сетью связи при перераспределении каналов и изменении трафика с учетом экономических факторов. Для обеспечения гибкости целесообразно обеспечить работу с незакрепленными каналами, т.е. такие, которые временно образуются по требованию абонента для соединения любых пар земных станций. Естественно, что это приводит к усложнению оборудования.

Возможно многоадресное и одноадресное построение группового сообщения. При многоадресном построении каждый из n земных станций передает в одном стволе все сообщения, предназначенные остальным n - 1 станциям. На приеме эти станции выделяют из группового сигнала "свои" сообщения. Такое построение требует наличие на каждой станции n - 1 комплекта приемного оборудования. При одноадресной системе передачи каждая станция занимает "свои" каналы в n - 1 стволах ретранслятора, предназначенных каждой определенной станции. На приеме все сигналы данной станции оказываются в одном стволе, что существенно уменьшает объем приемного оборудования. Однако при этом существенно усложняется передающее оборудование.

Возможно смешанное построение стволов. В этом случае на ретрансляторе происходит преобразование многоадресного построения в одноадресное.

В системах на базе геостационарных КА наиболее часто используется FDMA, при котором частотный спектр каждого канала разделен на участки определенной ширины. Для защиты от внутрисистемных помех между каналами предназначены интервалы, обеспечивающие разграничение частот соседних каналов с заданной точностью. Для сети с достаточно высокими энергетическими показателями линий связи применение FDMA позволяет создать наиболее простое абонентское оборудование с малым энергопотреблением.

Недостатком данного метода является низкая пропускная способность каналов связи. Кроме того, величина частотной неопределенности вследствие доплеровского сдвига, требует увеличивать защитный интервал, что ведет к значительным энергетическим потерям, особенно при использовании низкоорбитальных КА.

Mногостанционный доступ с временным разделением каналов (TDMA) применяется в системах Iridium, Orbcomm, ICO, "Гонец" и др. Высокая пропускная способность линии связи обеспечивается при сочетании метода TDMA с пространственным разделением каналов при разнесенном приеме, а современная техника позволяет одному КА формировать одновременно 100 и более узких лучей. Следует отметить, что проверенные временем технологии FDMA и TDMA гораздо проще реализовать в БРТК, чем CDMA, поэтому соответствующие ретрансляторы намного дешевле.

Такие преимущества технологии CDMA, как невысокая пиковая мощность абонентского оборудования и сравнительно низкие требования к динамике регулирования мощности передачи, делают ее особенно привлекательной для организации персональной подвижной радиосвязи c использованием терминалов типа "телефонная трубка". Одно из основных достоинств CDMA - возможность "мягкого" переключения при "передаче" абонента с одного спутника на другой. Метод CDMA пригоден и для обеспечения так называемого разнесенного приема (прием информации осуществляется через разные КА с последующим когерентным сложением или автоматическим выбором лучшего по качеству принимаемого сигнала), поддерживаемого, например, системой Globalstar.

Первой из коммерческих спутниковых систем, в которой была успешно опробована технология CDMA, является система Omnitracs, обеспечивающая контроль за грузоперевозками. Дальнейшее развитие эта технология получила в американских системах Globalstar, Starsys, Ellipso, а также в проектах систем 3-го поколения SAT-CDMA (Южная Корея), SW-CDMA и SW-CTDMA (ESA).

Известно, что техническая реализация разделения каналов на наземной станции обходится дешевле, чем на борту спутника, поэтому в системах, основанных на технологии CDMA, как правило, предполагается использование прозрачных ретрансляторов.

Система Aloha. Протокол множественного доступа Aloha разработан в Гавайском университете в начале 1970-х годов. В этой системе ЗС используют передачу пакетов по общему спутниковому каналу. В любой момент времени каждая ЗС может передавать только один пакет. Однако в этом случае могут возникнуть коллизии, так как одновременно могут передаваться на ретранслятор пакеты двух ЗС. Возникает требующая разрешения конфликтная ситуация.

В соответствии с первым вариантом Aloha, известной под названием «чистая система Aloha», ЗС могут начать передачу в любой момент времени. Если через определенное время распространения она получают «положительную квитанцию» (передача прошла успешно), то заключают, что избежали конфликтной ситуации. В противном случае ЗС знают, что произошла коллизия (произошло наложение или может был какой-либо другой источник шума) и необходимо повторить передачу (т.е. получают отрицательную квитанцию). Если ЗС сразу же после прослушивания повторят свои передачи, то наверняка опять попадут в конфликтную ситуацию. Требуется некоторая процедура разрешения конфликта для того, чтобы ввести случайные задержки при повторной передаче, и разнести во времени вступающие в конфликт пакеты.

По второму варианту в системе Aloha время делится на отрезки - окна, длина которых равна длине передаче одного пакета (предполагается, что все пакеты имеют одну и ту же длину). Если теперь потребовать, чтобы передача пакетов начиналась только в начале окна (время привязано к спутнику), то получится двойной выигрыш в эффективности использования спутникового канала, т.к. наложения при этом ограничиваются длиной одного окна (вместо двух, как в «чистой системе Aloha»). Такая передача называется синхронной системой Aloha (рис.7.4).

Рис.7.4 Период уязвимости для системы Aloha

По третьему варианту резервируются временные окна по требованию ЗС. В системе Aloha предусмотрено также назначение приоритетов для ЗС с большой интенсивностью нагрузки.

Лекция 20

Бортовая и земная аппаратура систем связи через ИСЗ

Структура бортового ретрансляционного комплекса (БРТК) определяется его назначением, или масштабностью охвата территорий (глобальная либо региональная связь), методом обработки информации на борту КА, количеством ретрансляционных каналов (приемных, передающих или приемопередающих), скоростью информационного обмена, а также выбранными техническим решениями и используемыми технологиями. В состав БРТК могут входить не только абонентские ретрансляторы (предназначенные для формирования "потребительских" лучей), но и ретрансляторы фидерных и/или межспутниковых линий (служебная связь).

По своему назначению и выполняемым функциям все ретрансляционные комплексы подразделяются на три типа: прозрачные, регенеративные и комбинированные.

Прозрачные ретрансляторы (bent pipe) обеспечивают прием и преобразование входных сигналов без их обработки на борту. Вместе с тем существуют ретрансляторы, также называемые прозрачными, но имеющими в своем составе один или несколько канальных процессоров или высокочастотную полнодоступную матрицу для коммутации каналов. Поэтому однозначно провести границу между прозрачным и регенеративным типами ретрансляторов практически невозможно.

Принцип действия регенеративных ретрансляторов, которые определяются как ретрансляторы с обработкой сигналов на борту (OBP, On Board Processing), основан на ремодуляции, т.е. приеме сигналов на одной частоте, их демодуляции и повторной модуляции на новой несущей. Использование таких ретрансляторов позволяет одновременно обслуживать большое количество терминалов, обеспечивая большую гибкость формирования каналов и оперативное соединение терминалов с применением разнообразных протоколов. В комбинированных ретрансляторах может выполняться обработка только определенных сигналов (какой-то части всех каналов), например соответствующих заданной несущей частоте.

Прозрачные. Большинство коммерческих ретрансляторов, используемых для передачи широкополосных и узкополосных сигналов (Intelsat, Eutelsat, Inmarsat и др.), строятся по традиционной, наиболее простой и распространенной, схеме организации связи без обработки (bent pipe - "прямая дыра"). В каждом ретрансляторе может быть установлено несколько комплектов приемо-передающей аппаратуры, подключенной к одной или разным антеннам. Отдельный приемо-передающий канал спутниковой связи называется стволом, или транспондером (transponder).

В современных геостационарных связных космических комплексах число стволов может достигать 50 и более, что позволяет реализовать высокую пропускную способность ретранслятора. В качестве примера в таб.7.6 приведены основные показатели ретрансляционных комплексов для геостационарных КА.

Таб.7.6 Основные показатели ретрансляционных комплексов GEO-КА

Основным достоинством прозрачных ретрансляторов является простота аппаратной реализации, поскольку в них осуществляется только групповое преобразование сигнала на промежуточной частоте без демодуляции и фильтрации каналов. Однако им присущ и ряд недостатков. Дело в том, что при работе нескольких наземных станций в широкой полосе частот неизбежно возникают нелинейные эффекты, приводящие к подавлению более слабого сигнала сильным, а также интермодуляционные помехи из-за преобразования паразитной амплитудной модуляции в фазовую и др.

Для уменьшения величины нелинейных эффектов, в прозрачных ретрансляторах используются передатчики, работающие в квазилинейном режиме. Вместе с тем эта мера не всегда оказывается недостаточной, так как при появлении в рабочей полосе даже одного сильного "мешающего" сигнала возможен отказ ретрансляционного ствола в целом.

Выход из этого положения возможен путем разделении всей полосы ствола на ряд парциальных каналов. Этот метод, получивший название "один канал на несущую" (SCPC, Single Cannal Per Carrier), широко применяется в сетях VSAT, поскольку он позволяет оперативно перераспределять трафик между наземными станциями.

Несмотря на перечисленные недостатки ретрансляторов типа bent-pipe они используются в современных системах связи с КА не только на геостационарной, но и на других орбитах, так как простоты в реализации.

Новым техническим решением при создании прозрачных ретрансляторов с SCPC является применение в них высокочастотной коммутируемой матрицы, выполненной на базе СВЧ интегральных схем и переключателей на PIN-диодах, обеспечивающих малую потерю мощности. Управление работой такого коммутатора осуществляется с помощью бортового процессора, а резервирование - за счет введения дополнительных рядов и столбцов матрицы.

Комбинированный. В ретрансляторе с одним канальным процессором принятый сигнал разделяется на выходе приемника на N каналов, в каждом из которых осуществляется прозрачное преобразование сигналов. Отличие такого БРТК от "абсолютно" прозрачного ретранслятора заключается в том, что в нескольких или одном канале устанавливается канальный процессор. Одно из преимуществ данного решения -простота модернизации существующего прозрачного ретранслятора до комбинированного, поскольку каналы с обработкой сигналов "вставляются" в обычный ретрансляционный ствол. Кроме того, возможно применение каналов с различными скоростями передачи, разными алгоритмами кодирования и т.п.

Регенеративные.

Ретрансляторы с пакетной коммутацией. Высокая эффективность передачи сигналов в системах спутниковой мобильной связи достигается при использовании в БРТК коммутаторов, которые чаще всего реализуются на базе технологии ATM или IP. Выбор конкретного протокола зависит от архитектуры системы и типа орбитальной группировки. Так, ATM-коммутатор больше всего подходит для сетей с топологией "звезда", использующих КА на геостационарной или низких орбитах (система SkyBridge).

Важное преимущество пакетной обработки - возможность использования асимметричных каналов на линиях "вверх" и "вниз", т.е. поддержка интерактивного режима.

Наиболее сложным является ретранслятор с пакетной обработкой информации на борту и маршрутизацией. Такие типы ретрансляторов применяются в системах с межспутниковыми линиями связи и узловой топологией, построенных на основе КА типа big LEO (Iridium) или mega LEO (Teledesic). В них динамическое перераспределение каналов (маршрутизация) осуществляется непосредственно в ретрансляторе и базируется на протоколе IP (Iridium).

Ретрансляторы с обработкой информации в нереальном времени. В спутниковых системах с КА типа little LEO для удаленных пользователей, оказавшихся вне зон обслуживания региональных станций (например, на борту морского судна), предусматривается возможность связи с другими абонентами системы через космический "почтовый ящик".

Связь в режиме электронного "почтового ящика" организуется следующим образом. Абонент может передать свое сообщение, когда в зоне радиовидимости появляется хотя бы один КА. Спутник примет это сообщение и запишет его в бортовое ЗУ ("почтовый ящик"). Информация будет отправлена получателю, как только данный КА достигнет его региона. Транспортные протоколы обеспечивают сборку пакетов, принадлежащих одному сообщению, в абонентском терминале независимо от маршрута их доставки и числа задействованных при транспортировке этих пакетов КА и наземных станций сопряжения.

Такие типы ретрансляторов обычно используются в спутниковых системах передачи данных: "Гонец", Orbcomm, Cospas-Sarsat и др. От систем, осуществляющих перенос информации на борту КА, требуется не непрерывность связи, а надежность доставки сообщения, поэтому их орбитальная группировка может состоять из небольшого числа КА. Временные характеристики обслуживания в такой системе определяются параметрами абонентских линий (таб.7.7).

Таб.7.7 Основные характеристики абонентских линий систем с КА little LEO *

Разнообразные виды связи и услуги, которые должно обеспечивать оборудование наземного сегмента, предопределили огромное число технических решений, необходимых для реализации конкретных задач. Унифицироваться могут лишь устройства определенного класса, но поскольку таковых немало, то "глобальная" унификации не возможна. Вместе с тем следует отметить, что цена оборудования наземного сегмента гораздо ниже космического.

Номенклатура наземных станций и терминалов обширна, так как чрезвычайно широк ассортимент предоставляемых услуг (передача речи, данных, видео и т. п.) и различное назначении ЗС и как следствие разнообразие их конструктивных исполнений (стационарные, портативные, автомобильные, железнодорожные, морские, самолетные). Кроме того, наземные станции различаются по своей роли в структуре наземного сегмента: магистральные, VSAT-станции, а также узлы сопряжения и координирующие станции, которые обеспечивают организацию связи в регионе. В зависимости от способа организации связи наземные станции подразделяются на приемопередающие, приемные и передающие станции (радиомаяки и радиобуи). В свою очередь, приемные станции подразделяются на приемные телевизионные станции индивидуального и коллективного пользования и пейджеры.

Для потребителей услуг связи наибольший интерес представляют абонентские ЗС, структуру которых определяют главным образом два признака. Первый - тип используемой орбиты (GEO, MEO, mega LEO, big LEO и little LEO), соответствующий степени удаленности ЗС от ретранслятора. Второй признак указывает на принадлежность земной станции к одной из трех спутниковых служб: фиксированной -- ФСС, телерадиовещательной -- РСС или подвижной -- ПСС.

Основываясь на этих признаках выделяют шесть основных классов наземных станций (рис.7.5).

Рис.7.5 Классификация земных станций

Фиксированная связь. Первые спутниковые системы связи относились к службе ФСС. Станции данного класса работают через геостационарные спутники в С (6/4 ГГц), Ku (14/11 ГГц) и Ka (20/30 ГГц) диапазонах частот и должны удовлетворять требованиям Регламента радиосвязи на земные станции службы ФСС. Использование следящих остронаправленных антенн и мощных передатчиков позволяет обеспечить высокую пропускную способность их спутниковых радиолиний. В зависимости от назначения и мощности потоков передаваемой информации ЗС фиксированной связи принято разделять на два подкласса: магистральные и VSAT.

Магистральные станции. Основная задача служб ФСС -- организация международной, магистральной и зоновой связи, и главная роль в организации этой связи принадлежит магистральным ЗС, которые формируют прямые многоканальные линии связи между периферийными АТС и радиальные каналы "центр--периферия".

Этот тип станций работает с многоствольными геостационарными спутниками. В настоящее время через магистральные станции передается около 50% международного телефонного трафика. Однако, по прогнозам аналитиков, к 2010 г. удельный вес этих ЗС снизится до 40%, что отражает растущую конкуренцию с ВОЛС на рынке магистральных средств связи.

Главными характеристиками магистральных ЗС являются диаметр параболического зеркала и добротность приемного оборудования, так как именно они определяют сложность, стоимость и "границы" использования станции (таб.7.8).

Таб.7.8 Характеристики наземных станций Intelsat

В отличие от бортовых антенн, у которых форма диаграммы направленности должна быть "согласована" с обслуживаемой земной поверхностью (глобальный, узкий, профилированный луч и т. п.), антеннам магистральных ЗС не свойственны подобные требования, так как они ориентируются строго на определенный КА. Стоимость наземной станции и ее основные эксплуатационные параметры определяются размерами используемой антенны. Чем больше диаметр антенны, тем выше ее стоимость и пропускная способность.

Так, в системе Intelsat первоначально использовались станции с диаметром антенн 30м и добротностью G/T=40,7 дБ/К в диапазоне частот 4--6 ГГц. По мере совершенствования КА и увеличения мощности излучения основные показатели были снижены до 16--18м (диаметр антенны) и 35 дБ/К (добротность). Цена такой станции около 8 млн долл., но при уменьшении диаметра антенны до 5 м стоимость ЗС снижается до 2 млн долл.

В состав каждой магистральной земной станции обычно входит приемопередающая антенная система с дуплексером, аппаратура наведения, многоствольные приемное и передающее устройства, а также каналообразующая аппаратура (рис.7.6).

Рис.7.6 Структурная схема магистральной ЗС

Приемное устройство осуществляет предварительное усиление сигналов с помощью входного малошумящего усилителя (МШУ) и их преобразование на промежуточную частоту. Конструктивная особенность магистральных ЗС - расположение МШУ не в основном помещении, а рядом с облучателем антенны, что позволяет снизить потери в фидерном тракте и за счет этого увеличить чувствительность станции. В современных МШУ, работающих в С- и Ku-диапазонах (ширина полосы частот от 500 МГц до 1 ГГц), эквивалентная шумовая температура составляет 50-150 К, коэффициент усиления 30 - 40 дБ.

На выходе усилителя мощности (при необходимости усиления до 0,5--3 кВт) применяются либо клистроны, либо лампы бегущей волны (ЛБВ). Основное достоинство клистронов - высокая стабильность и невысокий уровень шума, в то время как ЛБВ обеспечивает большую (по сравнению с ними) полосу пропускания. В усилителях мощностью 0,5 - 1 кВт обычно используют ЛБВ, а в более мощных (1 - 3 кВт) -клистроны. Современные усилители мощности оснащены средствами защиты от сбоев в системе электропитания и автоматического восстановления работоспособности.

VSAT. В настоящее время для создания корпоративных спутниковых сетей на базе геостационарных КА используются малые станции, так называемые VSAT (Very Small Aperture Terminal), которых во всем мире уже насчитывается более 250 тыс. VSAT-сети действуют не только в США, европейских и азиатских странах. В России собственные корпоративные VSAT-сети имеют крупные организации, такие как РАО "Газпром", РАО "ЕЭС России", МПС и Центробанк РФ.

Сети VSAT объединяют географически удаленных пользователей в единую цифровую сеть связи. Но, в отличие от глобальных ССС, вся зона обслуживания сетей VSAT разделена на узкие парциальные зоны, каждая из которых обслуживается одним узким лучом.

При современных энергетических показателях бортовых комплексов VSAT-станции могут быть весьма невелики, а размер их антенн 0,5 - 0,6 м (Ka-диапазон) и 1 - 1,5 м (Ku-диапазон). Такие терминалы могут размещаться вблизи рабочих мест пользователей. Наземные станции с диаметром антенны менее 0,5 м называются USAT (Ultra Small Aperture Terminal).

ССС, использующие технологию VSAT, отличают не только высокие экономические показатели (по сравнению с типами ССС на базе геостационарных КА), но и богатые возможности управления сетью (распределение нагрузки, установление приоритетов, изменение конфигурации сети, дистанционное управление периферийными станциями), а также высокое качество работы каналов связи.

Станции VSAT-сетей не требуют постоянного обслуживающего персонала, а скорость передачи в такой сети может быть достаточно велика. Они поддерживают разнообразные протоколы обмена, в том числе и для передачи телефонии и видеоинформации.

Средние мировые цены на оборудование VSAT-сетей примерно таковы: базовая станция - 1 млн долл., наземная на восемь каналов - 15 тыс. долл., а одноканальная - 12,7 тыс. долл.

Подвижная связь. В системах подвижной связи, использующих геостационарные КА, чаще всего применяются наземные станции, работающие в L-диапазоне и ориентированные на передачу телефонии и данных. (В пределах зоны обслуживания спутника связь обеспечивается в масштабе реального времени.) На судах, автомобилях, поездах, самолетах устанавливаются станции, в которых предусмотрено автоматическое слежение за спутником. Типовой комплект пользовательской аппаратуры включает приемопередатчик (размером не больше "дипломата" и массой до 5 кг), следящую антенную систему и интерфейсное оборудование (как правило, для факсимильной связи). Терминал комплектуется различными типами антенн, по выбору пользователя. CCC, которые обеспечивают услуги подвижной связи, немало, и число их продолжает расти.

Рассмотрим наиболее популярные (по виду услуг) спутниковые системы подвижной связи.

Inmarsat. Наземный сегмент ССС Inmarsat состоит из береговых (БЗС), координирующих (КСС) станций, эксплуатационного контрольного центра (ЭКЦ), а также абонентских станций морского, авиационного и наземного исполнения.

Эксплуатационный контрольный центр - мощная земная станция для приема и обработки информации о состоянии всех элементов системы и контроля характеристик космического сегмента. В ее функции входит обеспечение ввода в эксплуатацию новых технических средств Inmarsat (КА и ЗС).

Береговые станции поддерживают связь между КА системы Inmarsat и абонентами, в том числе и по международным и национальным телефонным и телеграфным сетям. Мобильные абоненты Inmarsat не могут связаться друг с другом непосредственно; их соединение предусмотрено только через береговую станцию. В каждой подспутниковой зоне Inmarsat работают несколько стандартных БЗС, одна из которых выполняет функции координирующей.

Координирующая станция осуществляет мониторинг ССС в данном регионе, распределяет трафик ретранслятора между береговыми станциями, а также передает сообщения вызова морским судам на основной (1537,750 МГц) или резервной (1538,475 МГц) частоте и выполняет ретрансляцию специальных сообщений.

Каждая БЗС Inmarsat имеет закрепленную за ней несущую, которую уплотняют 22 телеграфных канала. Телефонные каналы за конкретными станциями не закреплены, а находятся в "общем пользовании", но БЗС имеют выход в национальные и международные сети телефонной и телексной связи. Диаметр параболической антенны БЗС 12 - 15 м. Стоимость береговой станции в зависимости от комплектации составляет 1 --2,5 млн долл.

На подвижных объектах могут быть использованы разные типы абонентского оборудования Inmarsat, различающиеся по специфическим требованиям, которые обобщены в виде Стандартов Inmarsat.

Euteltracs. Первой коммерческой системой связи, ориентированной на обеспечение транспортных перевозок в Европе, стала ССС Euteltracs. По своей архитектуре и видам обслуживания европейская система Euteltracs идентична американской Omnitracs, предоставляющей аналогичные услуги в Северной Америке и Мексике. Она обеспечивает передачу групповых и индивидуальных (в том числе аварийных и экстренных) сообщений длиной не более 1900 символов.

В состав наземного сегмента Euteltracs входят: центральная станция (ЦС), станция маршрутизации (СМ), спутниковые диспетчерские пункты (СДП) и мобильные связные терминалы (МСТ, Mobile Communication Terminal) (рис.7.7).

Рис.7.7. Схема организации диспетчерской связи в системе Euteltracs

Информационный обмен осуществляется через центральную станцию, расположенную во Франции, вблизи которой находится станция маршрутизации, являющаяся фактически почтовым ящиком ЦС. Маршрутизатор анализирует все принимаемые сообщения и выдает разрешение на установление соединения. С помощью спутниковых диспетчерских пунктов устанавливается непосредственная связь с абонентами, причем предварительно всегда делается запрос статуса исходящих и входящих сообщений, накопившихся у абонента.

К станции маршрутизации сообщений подключен стационарный диспетчерский центр, связанный с СМ через телефонную сеть общего пользования (ТфОП) или сеть передачи данных (СПД). Диспетчерский центр наделен правами запросить копию любого сообщения и определить местоположение любого абонента сети.

Мобильный терминал Euteltracs оснащен DSP-процессором и обеспечивает все функции обработки сигналов, включая демодуляцию и установление соединения. Передаваемый сигнал излучается остронаправленной антенной с коэффициентом усиления 19 дБи. Уровень мощности боковых лепестков антенны не превышает 12 дБ. Линейный тракт приемника содержит МШУ и преобразователь частоты. Выходная мощность передатчика 1 Вт. Помехозащищенность сигналов обеспечивается за счет их широкополосной передачи в полосе 1 МГц и скачкообразной перестройки частот в полосе от 5 до 48 МГц. Сигналы, относящиеся к полосе частот 1 МГц, скачкообразно перестраиваются в полосе 48 МГц.

Стоимость терминалов 4-6 тыс. долл., абонентная плата составляет 40 - 50 долл./мес.

Система Euteltracs способна обслуживать 45 тыс. транспортных средств на территориях не менее 15 европейских стран, включая Россию. Сегодня клиентами этой ССС являются транспортные компании Совтрансавто, Интертрансэкспедиция и др.

Дальнейшее наращивание пропускной способности Euteltracs может быть осуществлено за счет оснащения КА дополнительными ретрансляторами.

Prodat -- передача данных на суше. Исследования, проведенные Европейским космическим агентством (ЕКА), подтвердили, что требования к наземным, морским и самолетным терминалам ССС существенно различаются. Для мобильных средств связи морского и воздушного базирования определяющим фактором, ухудшающим условия приема сигналов, является сильная многолучевость, а на наземные устройства наибольшее влияние (вплоть до перерывов связи со спутником) оказывают помехи, обусловленные глубокими замираниями вследствие затухания радиоволн в рельефе местности или при движении в туннелях.

Созданная EKA система Prodat (рис.7.8) ориентируется только на использование ее терминалов на сухопутных транспортных средствах, а ее протокол передачи данных оптимизирован по критериям минимизации типичных помех для спутниковой связи с объектами, находящимися на суше.

Рис.7.8 Структурная схема ССС Prodat

Prodat базируется на достаточно простой централизованной архитектуре, которая обеспечивает связь мобильных терминалов (рис.7.9) со спутником и с различными наземными сетями (телефонными, телексными и др.).

Рис.7.9 Терминалы ССС Prodat

Система Prodat использует два диапазона частот: С-диапазон (4,2 ГГц для приема и 6,4 ГГц для передачи) для связи с центральной станцией и L-диапазон (1631,5—1660,5 МГц на линии "вверх" и 1530--1559 МГц на линии "вниз") для связи между мобильными терминалами. В прямом канале (от центра управления к мобильному терминалу) информация передается в режиме временного разделения каналов -- TDMA (32 канала, в каждом из которых данные передаются со скоростью 1500 бит/c); вид модуляции -- BPSK. В обратном используется кодовое разделение каналов для широкополосных сигналов (SS-CDMA); вид модуляции -- OQPSK. Скорость передачи данных в обратном канале -- 600 бит/с, размер передаваемого сообщения -- 384 бит (восемь блоков по 48 бит); помехоустойчивое кодирование реализовано на основе коротких блочных кодов Рида -­Соломона. В перспективе планируется увеличить скорость передачи до 9,6 кбит/с.

Терминал Prodat оснащен встроенным GPS-приемником, однако позволяет использовать и другие навигационные системы, например "Глонасс" и Loran-C . Данные о местоположении могут передаваться как в автоматическом режиме (с заданной периодичностью), так и по запросу. Базовая конфигурация мобильного терминала Prodat включает в себя три основных блока: внешний радиочастотный (ODU) с антенной, внутренний связной (IDU) и оконечное устройство пользователя. Малогабаритная всенаправленная антенна имеет круговую правостороннюю поляризацию. Масса антенны 180 г, высота 130 мм, диаметр 105 мм. Она может устанавливаться как на крыше автомобиля, так и в кабине водителя. Блок ODU, содержащий радиочастотные модули, может размещаться как внутри, так и снаружи транспортного средства и соединяется с антенной полутораметровым кабелем. Блок IDU состоит из микропроцессора и аппаратуры передачи данных, соединяемых с внешним электронным блоком кабелем длиной 5 м.

Оконечным устройством пользователя служит специальная 60-клавишная клавиатура с встроенным ЖК-дисплеем (восемь строк по 40 знаков) и малогабаритным принтером. Размеры клавиатуры 220 х 210 х 90 мм, масса 1,5 кг. Дополнительно терминал может быть оснащен малогабаритной пятикнопочной клавиатурой (массой не более 150 г), предназначенной для передачи "стандартных сообщений" (коротких сообщений, хранящихся в памяти микро-ЭВМ). Основные параметры терминала Prodat: ЭИИМ 13 дБВт, добротность (G/T) -24 дБ/К. Масса блока ODU 4,3 кг, размеры 250 х 110 х 113 мм. Рабочий диапазон температур от - 20 до +600С. Масса блока IDU 4,5 кг, размеры 335 х 170 х 85 мм. Рабочий диапазон температур от 0 до +500С. Напряжение питания от источника постоянного тока 24 В. Потребление терминала в режиме приема - не более 25 Вт.

Энергетический расчет и качественные показатели спутниковых систем связи

Гипотетическая эталонная цепь Земля- Спутник - Земля, содержит один модулятор и один демодулятор. При передаче ТВ, отношение размаха сигнала (от уровня белого, до уровня черного) к визометрическому напряжению шумов должно быть не менее 61 дБ в 80% времени, 57 дБ в 99% и 49 дБ в 99,9% времени любого месяца. Отношение сигнал/помеха для источников питания должно быть больше 30 дБ, а для других периодических помех - не менее 50 дБ.

При передаче псофометрическая мощность шума в точке с нулевым относительным уровнем не должна превышать 10000 пВт в среднем за любой час. Допускается превышение среднеминутного значения шума величиной 10000 пВт не более чем в 20% времени любого месяца и 50000 пВт не более чем в 0,3% времени любого месяца. Превышение не взвешенным шумом 106 пВт допускается не более чем в 0,03% времени любого месяца. Допустимое время запаздывания группового времени распространения в системах с ИСЗ должно быть не более 300 мс.

Спутниковая система связи состоит из двух участков Земля-ИСЗ и ИСЗ- Земля. Расчет аналогичен расчету РРС прямой видимости содержащей два интервала. Однако в спутниковых системах необходимо учитывать особенности аппаратурных отличий на этих участках, а также разных энергетических потенциалов и шумов на этих участках.

Отношение сигнал/шум на входе приемника земной станции (Рс/Рш)вх

Мощность сигнала на входе приемника Рс связано с мощностью передатчика соотношением

где: Gпер, и Gпр - коэффициент усиления антенн; - потери в антенно-фидерном тракте;

- потери в свободном пространстве на расстоянии R; U - добавочные потери в реальном пространстве.

Или можно записать:

Для всей линии с ИСЗ

Для участка Земля – Спутник

Для системы связи через ИСЗ можно приближенно считать, что:

1. 2.

3.

4.

Поэтому можно записать