Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
бх 59-62.docx
Скачиваний:
3
Добавлен:
20.11.2019
Размер:
59.5 Кб
Скачать

2. Подтип iIb:

Причина неизвестна.

Лабораторные показатели: возрастание концентрации β‑липопротеинов и преβ‑липопротеинов; высокий уровень холестерина; умеренное повышение триацилглицеринов.

Клинически проявляется атеросклеротическими нарушениями (семейная гиперхолестеринемия). Первичная гипер β‑липопротеинемия встречается более часто и наблюдается уже в раннем возрасте и в случае гомозиготной формы заканчивающейся летальным исходом от инфаркта миокарда в молодом возрасте, вторичная отмечается при нефрозах, заболеваниях печени, миеломной болезни, макроглобулинемии.

Тип III: Гиперβ‑гиперпреβ‑липопротеинемия  или дисβ‑липопротеинемия

Обусловлена нарушением превращения ЛПОНП в ЛПНП, появлением патологически флотирующих ЛПОНП или ЛПНП;

Лабораторные показатели: возрастание концентрации β‑липопротеинов и преβ‑липопротеинов; высокий уровень холестерина и триацилглицеринов; отношение ХС / ТАГ = 0,3‑2,0 (чаще составляя около 1,0).

Клинически проявляется атеросклерозом с коронарными нарушениями, чаще встречается у взрослых. У части больных отмечаются плоские, бугорчатые и эруптивные ксантомы. Вторичная гиперлипопротеинемия III типа встречается у больных системной красной волчанкой и диабетическим кетоацидозом.

Тип IV. Гиперпреβ‑липопротеинемия

Обусловлена интенсивным синтезом триглицеринов в печени.

Лабораторные показатели: повышение ЛПОНП; повышение уровня триацилглицеридов; нормальный или слегка повышенный уровень холестерина.

Первичная гиперлипопротеинемия IV типа приводит к развитию ожирения и атеросклероза после 20 лет, вторичная — наблюдается при гипотиреозе, диабете, панкреатите, нефрозе, алкоголизме.

Тип V: Гиперхиломикронемия и гиперпреβ‑липопротеинемия

Обусловлена умеренным снижением активности липопротеинлипазы.

Лабораторные показатели: повышение уровня хиломикронов; повышение уровня преβ‑липопротеинов; содержание триглицеринов повышенное, в ряде случаев резко; содержание холестерина в норме или умеренно повышено; отношение ХС / ТАГ = 0,15‑0,60

Клинически проявляется как первый тип.

Гипер‑α‑липопротеинемия.

Лабораторные показатели: повышение количества ЛПВП; повышение уровня α‑холестерина свыше 2 ммоль/л.

Известны случаи семейной гипер‑α‑холестеринемии и увеличение ЛПВП в крови при тренировке к длительным физическим нагрузкам.

Алипопротеинемия

1. Ан‑α‑липопротеинемия (танжерская болезнь).

Обусловлена врожденным нарушением синтеза апопротеинов А‑I и А‑II.

Лабораторные показатели: отсутствие нормальных и появление аномальных ЛПВП; снижение содержания общего холестерина до 0,26 ммоль/л и менее; увеличение доли эфиров холестерина.

Клинические проявляется тонзиллитом, рано развивающимся атеросклерозом и ишемической болезнью сердца.

2. А‑β‑липопротеинемия.

Обусловлена снижением синтеза в печени апопротеина В.

Лабораторные показатели: снижение количества хиломикронов; снижение уровня ЛПОНП и ЛПНП. снижение холестерина до 0,5‑2,0 ммоль/л; снижение содержания триглицеридов до 0‑0,2 г/л.

Клинически проявляется нарушением всасывания пищевых жиров, пигментным ретинитом, акантозом и атаксической невропатией.

Гиполипопротеинемия

1. Гипо‑α‑липопротеинемия часто сочетается с увеличением в крови ЛПОНП и ЛПНП. Клинически проявляется как II, IV и V типы гиперлипопротеинемий, что увеличивает риск возникновения атеросклероза и его осложнений.

2. Гипо‑β‑липопротеинемия выражается в снижении в крови ЛПНП. Клинически проявляется нарушением всасывания пищевых жиров в кишечнике.

61. Структура и функции биологических мембран. Общие свойства мембран: жидкостностьпоперечная асимметрия, избирательная проницаемость,, Разнообразие структур и функций мембран, механизм транспорта веществ через мембрану.

Основу мембраны составляет двойной липидный слой, в формировании которого участвуют фосфолипиды и гликолипиды. Липидный бислой образован двумя рядами липидов, гидрофобные радикалы которых спрятаны внутрь, а гидрофильные группы обращены наружу и контактируют с водной средой. Белковые молекулы как бы "растворены" в липидном бислое. Мембранные липиды - амфифильные (амфипатические) молекулы, т.е. в молекуле есть как гидрофильные группы (полярные "головки"), так и алифатические радикалы (гидрофобные "хвосты"), самопроизвольно формирующие бислой. В большинстве эукариотических клеток они составляют около 30-70% массы мембраны. В мембранах присутствуют липиды трёх главных типов - фосфолипиды, гликолипиды и холестерол (холестерин).

Ф осфолипиды. Все фосфолипиды можно разделить на 2 группы - глицерофосфолипиды и сфингофосфолипиды. Глицерофосфолипиды относят к производным фосфатидной кислоты. Наиболее распространённые глицерофосфолипиды мембран - фосфатидилхолины и фосфатидилэтаноламины. В мембранах эукариотических клеток обнаружено огромное количество разных фосфолипидов, причём они распределены неравномерно по разным клеточным мембранам. Эта неравномерность относится к распределению как полярных "головок, так и ацильных остатков.

Гликолипиды. В гликолипидах гидрофобная часть представлена церамидом. Гидрофильная группа - углеводный остаток, присоединённый гликозидной связью к гидроксильной группе у Первого углеродного атома церамида. В зависимости от длины и строения углеводной части различают цереброзиды, содержащие моно- или олигосахаридный остаток, и ганглиозиды, к ОН-группе которых присоединён сложный, разветвлённый олигосахарид, содержащий N-ацетилнейраминовую кислоту (NANA).

Полярные "головки" гликосфинголипидов находятся на наружной поверхности плазматических мембран. В значительных количествах гликолипиды содержатся в мембранах клеток мозга, эритроцитов, эпителиальных клеток. Ганглиозиды эритроцитов разных индивидуумов различаются строением олигосахаридных цепей, проявляющих антигенные свойства.

Холестерол. Холестерол присутствует во всех мембранах животных клеток. Его молекула состоит из жёсткого гидрофобного ядра и гибкой углеводородной цепи, единственная гидроксильная группа является "полярной головкой" Для животной клетки среднее молярное отношение холестерол/фосфолипиды равно 0,3-0,4, но в плазматической мембране это соотношение гораздо выше (0,8-0,9). Наличие холестерола в мембранах уменьшает подвижность жирных кислот, снижает латеральную диффузию липи-дов и белков, и поэтому может влиять на функции: мембранных белков. В составе мембран растений холестерола нет, а присутствуют растительные стероиды - ситостерол и стигмастерол.

К основным функциям мембран можно отнести:

  • отделение клетки от окружающей среды и формирование внутриклеточных компартментов(отсеков);

  • контроль и регулирование транспорта огромного разнообразия веществ через мембраны;

  • участие в обеспечении межклеточных взаимодействий, передаче внутрь клетки сигналов;

  • преобразование энергии пищевых органических веществ в энергию химических связей молекул АТФ.

Асимметрия липидов

Каждая мембрана клетки замкнута, т.е. имеет внутреннюю и внешнюю поверхности, различающиеся по липидному и белковому составам - эту особенность мембран называют трансмембранной (поперечной) асимметрией. Липидная асимметрия возникает прежде всего потому, что липиды с более объёмными полярными "головками" стремятся находиться в наружном монослое, так как там площадь поверхности, приходящаяся на полярную "головку", больше. Фосфатадилхолины и сфингомиелины локализованы преимущественно в наружном монослое, а фосфатидилэтаноламины и фосфатидилсерины в основном во внутреннем.

Жидкостностъ мембран

Для мембран характерна жидкостность (текучесть), способность липидов и белков к латеральной диффузии. Скорость перемещения молекул зависит от микровязкости мембран, которая, в свою очередь, определяется относительным содержанием насыщенных и ненасыщенных жирных кислот в составе липидов. Микровязкость меньше, если в составе липидов преобладают ненасыщенные жирные кислоты, и больше при высоком содержании насыщенных жирных кислот. Ацильные (алифатические) остатки ненасыщенных жирных кислот имеют так называемые "изломы". Эти "изломы" препятствуют слишком плотной упаковке молекул в мембране и делают её более рыхлой, а следовательно и более "текучей". На текучесть мембран также влияют размеры углеводородных "хвостов" липидов, с увеличением длины которых мембрана становится более "текучей".

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс — одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних — активные процессы, связанные с потреблением энергии. Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

Разнообразие структур мембран

Плазматическая мембрана Плазматическая мембрана, окружающая каждую клетку, определяет её величину, обеспечивает транспорт малых и больших молекул из клетки и в клетку, поддерживает разницу концентраций ионов по обе стороны мембраны. Мембрана участвует в межклеточных контактах, воспринимает, усиливает и передаёт внутрь клетки сигналы внешней среды. С мембраной связаны многие ферменты, катализирующие биохимические реакции.

Ядерная мембрана Ядерная оболочка состоит из внешней и внутренней ядерных мембран. Ядерная оболочка имеет поры, через которые РНК проникают из ядра в цитоплазму, а регуляторные белки из цитоплазмы в ядро. Внутренняя ядерная мембрана содержит специфические белки, имеющие участки связывания основных полипептидов ядерного матрикса - ламина А, ламина В и ламина С. Важная функция этих белков - дезинтеграция ядерной оболочки в процессе митоза.

Мембрана эндоплазматического ретикулума (ЭР) Мембрана ЭР имеет многочисленные складки и изгибы. Она образует непрерывную поверхность, ограничивающую внутреннее пространство, называемое полостью ЭР. Шероховатый ЭР связан с рибосомами, на которых происходит синтез белков плазматической мембраны, ЭР, аппарата Гольджи, лизосом, а также секретируе-мых белков. Области ЭР, не содержащие рибосом, называют гладким ЭР. Здесь происходит завершающий этап биосинтеза холестерина, фосфолипидов, реакции окисления собственных метаболитов и чужеродных веществ с участием мембранных ферментов - цитохрома Р450, цитохром Р450 редуктазы, цитохром b5 редуктазы и цитохрома b5 (см. раздел 12).

Аппарат Гольджи Аппарат Гольджи - важная мембранная органелла, отвечающая за модификацию, накопление, сортировку и направление различных веществ в соответствующие внутриклеточные компартменты, а также за пределы клетки. Специфические ферменты мембраны комплекса Гольджи, гликозилтрансферазы, гликозилируя белки по остаткам серина, треонина или амидной группе аспарагина, завершают образование сложных белков - гликопротеинов.

Митохондриальные мембраны Митохондрии - органеллы, окружённые двойной мембраной, специализирующиеся на синтезе АТФ путём окислительного фосфорилирования. Отличительная особенность внешней митохондриальной мембраны - содержание большого количества белка порина, образующего поры в мембране. Благодаря порину внешняя мембрана свободно проницаема для неорганических ионов, метаболитов и даже небольших молекул белков (меньше 10 кД). Для больших белков внешняя мембрана непроницаема, это позволяет митохондриям удерживать белки межмембранного пространства от утечки в цитозоль. Для внутренней мембраны митохондрий характерно высокое содержание белков, около 70%, которые выполняют в основном каталитическую и транспортную функции. Транслоказы мембраны обеспечивают избирательный перенос веществ из межмембранного пространства в мат-рикс и в обратном направлении, ферменты участвуют в транспорте электронов (цепи переноса электронов) и синтезе АТФ. Подробно строение и функционирование ферментов цепи переноса электронов рассмотрено в разделе 6.

Мембрана лизосом Мембрана лизосом играет роль "щита" между активными ферментами (более 50), обеспечивающими реакции распада белков, углеводов, жиров, нуклеиновых кислот, и остальным клеточным содержимым. Мембрана содержит уникальные белки, например АТФ-зависимую протонную помпу (насос), которая поддерживает кислую среду (рН 5), необходимую для действия гидролитических ферментов (протеаз, липаз), а также транспортные белки, позволяющие продуктам расщепления макромолекул покидать лизосому. Большинство белков лизосомальной мембраны сильно гликозилированы, углеводные составляющие, находящиеся на внутренней поверхности мембраны, защищают их от действия протеаз.

Механизм транспорта в-в через мембрану

Легче всего проходят простой диффузией через липидную мембрану малые неполярные молекулы, такие как О2, стероиды, тиреоидные гормоны, а также жирные кислоты. Малые полярные незаряженные молекулы - СО2, NH3, Н2О, этанол, мочевина - также диффундируют с достаточно большой скоростью. Диффузия глицерола идёт значительно медленнее, а глюкоза практически не способна самостоятельно пройти через мембрану. Для всех заряженных молекул, независимо от размера, липидная мембрана непроницаема. Транспорт таких молекул возможен благодаря наличию в мембранах либо белков, формирующих в липидном слое каналы (поры), заполненные водой, через которые могут проходить вещества определённого размера простой диффузией, либо специфических белков-переносчиков, которые избирательно взаимодействуя с определёнными лигандами, облегчают их перенос через мембрану (облегчённая диффузия).

Кроме пассивного транспорта веществ, в клетках есть белки, активно перекачивающие определённые растворённые в воде вещества против их градиента, т.е. из меньшей концентрации в область большей. Этот процесс, называемый активным транспортом, осуществляется всегда с помощью белков-переносчиков и происходит с затратой энергии.

Каналы в мембране формируются интегральными белками, которые "прерывают" липидный бислой, образуя пору, заполненную водой. Стенки канала "выстилаются" радикалами аминокислот этих белков. Если каналы различают вещества только по размеру и пропускают все молекулы меньше определённой величины, по градиенту концентрации, т.е. служат фильтрами, то их называют "неселективные каналы", или "поры» Селективные каналы,  как правило, участвуют в переносе определённых ионов. Ионная селективность (избирательность) каналов определяется их диаметром и строением внутренней поверхности канала. Открытие или закрытие селективных каналов регулируется либо изменением концентрации специфических регуляторов, таких как медиаторы, гормоны, циклические нуклеотиды, NO, G-белки, либо изменением трансмембранного электрохимического потенциала

Облегчённая диффузия веществ

В мембранах клеток существуют белки-транслоказы. Взаимодействуя со специфическим лигандом, они обеспечивают его диффузию (транспорт из области большей концентрации в область меньшей) через мембрану. В отличие от белковых каналов, транслоказы в процессе взаимодействия с лигандом и переноса его через мембрану претерпевают конформационные изменения. Кинетически перенос веществ облегчённой диффузией напоминает ферментативную реакцию. Для транслоказ существует насыщающая концентрация лиганда, при которой все центры связывания белка с лигандом заняты, и белки работают с максимальной скоростью Vmax. Поэтому скорость транспорта веществ облегчённой диффузией зависит не только от градиента концентраций переносимого лиганда, но и от количества белков-переносчиков в мембране.

Существуют транслоказы, переносящие только одно растворимое в воде вещество с одной стороны мембраны на другую. Такой простой транспорт называют "пассивный унипорт".Примером унипорта может служить функционирование ГЛЮТ-1 - транслоказы, переносящей глюкозу через мембрану эритроцита Некоторые транслоказы могут переносить два разных вещества по градиенту концентраций в одном направлении - пассивный симпорт, или в противоположных направлениях - пассивный антипорт. Внутренняя митохондриальная мембрана содержит много транслоказ, осуществляющих пассивный антипорт. В процессе такого переноса происходит эквивалентный обмен ионами, но не всегда эквивалентный обмен по заряду.

 Строение и функционирование белков-переносчиков, осуществляющих активный транспорт

Перенос некоторых лигандов (ионов, глюкозы, аминокислот) через мембраны происходит против градиента концентрации и сопряжён с затратой энергии (активный транспорт). Перенос лигандов через мембрану, связанный с затратой энергии АТФ, называют "первично-активный транспорт".

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]