Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Термопреобразователи сопротивления. Контроль температуры.doc
Скачиваний:
254
Добавлен:
20.05.2014
Размер:
3.32 Mб
Скачать

3. Отличие терморезисторов от металлических термопреобразователей сопротивления

Полупроводниковые термометры сопротивления изготавливаются из окислов различных металлов с добавками. Наибольшее распростра­нение имеют термометры сопротивления кобальто-марганцевые (КМТ) и медно-марганцевые (ММТ), используемые для измерения температур в пределах от - 90 до +180°С. В отличие от металлических сопротивление этих термометров при увеличении температуры уменьшается по экспоненциальному закону, благодаря чему они имеют высокую чувствительность. Однако изготавливать полупроводниковые термометры со строго одинаковыми характеристиками не удается, поэтому они градуируются индивидуально. Чаще всего их используют в качестве датчиков различных автоматических устройств [1,2].

4. Градуировка термопреобразователя сопротивления. Градуировки технических платиновых и медных термопреобразователей сопротивления

Градуировкой называется операция, в ходе которой делениям шкалы прибора придаются значения, выраженные в установленных единицах измерения. При градуировке термопреобразователей сопротивления используют потенциометрический метод измерения величины сопротивления термометра сопротивле­ния. Переключатель П2 включают, П3 отключают. Тогда в цепь источника регулируемого напряжения 2 последовательно будут включены термометр сопротивления Rt (7), образцовые сопротивления RN = 100 Ом и контрольный миллиамперметр 3. Посред­ством переключателя И к переносному потенциометру ПП (1) могут поочередно присоединяться термометр сопротивления Rt или образцовое сопротивление RN. Ток в цепи, контролируемый милли­амперметром 3, поддерживается постоянным, не превышающим 5 мА.

Установив в водяной бане 10 необходимую температуру, потенциометром 1 измеряют разности потенциалов при неизменном токе в цепи:

- на образцовом сопротивлении: UN = IRN;

- на термометре сопротивления: Ut = IRt.

Величину сопротивления рассчитывают по уравнению: Rt = (Ut/UN)·RN

Градуировка термометра сопротивления выполняется при температурах 0; 20; 40; 60; 80 и 100°С. Для градуировки при 0°С термометр сопротивления помещают в термостат с тающим льдом. Градуировка его при других температурах производится с по­мощью водяной бани 10, в которой температура устанавливается стрелкой задатчика манометрического термометра 6. Момент сня­тия показаний определяется визуально по образцовому ртутному термометру 11 через 5 мин после прекращения изменений его пока­заний.

Полученные данные заносят в таблицу и наносят на график, по оси абсцисс которого откладывают действительные значения тем­пературы в водяной бане 10, определяемые по показаниям образ­цового ртутного термометра в °С, а по оси ординат - величины сопротивлений термометра сопротивления Rt.

5. Измерительные приборы, применяемые в комплекте с термопреобразователями сопротивления

В качестве измерительных приборов термометров сопротивления применяются логометры и уравновешенные мосты. Для полупроводниковых термосопротивлений измерительными приборами обычно служат неуравновешенные мосты [1].

Логометры — это магнитоэлектрические приборы, подвижная система которых состоит из двух жесткоскрепленных между собой рамок, расположенных под некоторым углом друг другу (в предельном случае в одной плоскости).

Угол поворота такой подвижной системы есть функция отно­шения токов в обеих рамках:

 = f(I1/ I2),

где I1, I2 - токи, протекающие по рамкам.

В определенных пределах колебания напряжения источника питания не влияют на показания прибора [1].

Таким образом, в логометре совмещены достоинства уравнове­шенных (независимость от колебаний напряжения источника питания) и неуравновешенных мостов (непосредственное измерение).

Рассмотрим схему логометра (рис.4). Постоянный магнит снабжен полюсными наконечниками N и S с эллиптическими выточками. Центры выточек полюсных наконечников смещены относительно центра сердечника. Между полюсными наконеч­никами расположен цилиндрический сердечник из мягкой стали, вокруг которого вращается подвижная система из двух рамок - R1 и R2. К рамкам прикреплена стрелка, перемещающаяся вдоль шкалы, проградуированной в градусах. Воздушный зазор между полюсными наконечниками и сердечником неравномерен. Поэтому магнитная индукция меняется (наибольшее значение в середине полюсных наконечников, наименьшее - у края), являясь функ­цией угла поворота от среднего положения.

К рамкам подводится ток от общего источника питания (сухой батареи). В рамку R1 ток поступает через постоянное сопротивление R, в рамку R2через сопротивление термометра Rt. Напра­вление токов I1 и I2 таково, что вращающие моменты рамок оказываются направленными навстречу один другому и соответственно равны:

M1 = c1B1I1; M2 = с2B2I2,

где с1 и с2 - постоянные, зависящие от геометрических разме­ров и числа витков рамок; B1 и В2 — магнитные индукции в зоне расположения рамок [1].

Если сопротивление рамок одина­ково и R = Rt, то I1 = I2, т. е. вра­щающие моменты рамок равны. При этом подвижная система нахо­дится в среднем положении.

Принцип действия логометра. При изменении сопротивления термометра вследствие нагрева (или охлаждения), через одну из рамок потечет ток большей вели­чины, равенство моментов нарушится, и подвижная система начнет поворачиваться в сторону действия большего момента. При вра­щении подвижной системы рамка, по которой течет ток большей величины, попадает в зазор с меньшей магнитной индукцией, вследствие чего действующий на нее момент уменьшается. Наобо­рот, другая рамка входит в зазор с большой магнитной индукцией, и ее момент увеличивается. Вращение рамок продолжается до тех пор, пока их вращающие моменты станут снова равными.

Для рамок одинаковой конструкции из соотношения М12 получим:

.

При изменении Rt изменяется отношение I1/I2. Рамки вращаются до тех пор, пока при новом положении рамок отношение В21 не сравняется с соотношением I1/I2.

Уравновешенные мосты (рис. 5). Мост состоит из двух постоянных сопротивлений R1 и R3, сопротивления R2 (реохорда) и сопротивления термометра Rt. Сопротивле­ния двух соединительных проводов 2Rnp при­бавляются к сопротивлению Rt. В одну диаго­наль моста включен источник постоянного тока (сухая батарея), а в другую — нуль-прибор [1].

При равновесии моста, ко­торое достигается перемещением движка по реохорду, ток в диа­гонали моста Iо = 0. В этом случае потенциалы на вершинах моста b и d равны, ток от источ­ника пита­ния I разветвляется в вершине моста на две ветви R1 и R3, паде­ние напряжения на сопротивле­ниях R1 и R3 одинаково:

R1I1 = R3I3. (1)

Падения напряжения на плечах моста be и cd также равны:

I2R2 = It(Rt + 2Rnp). (2)

Разделив равенство (1) на равенство (2), получим

. (3)

При Iо = 0, Ii = I2 и Iз = It уравнение (3) примет вид

R1 (Rt + 2Rпр) = R2R3.

Сопротивление термометра будет составлять:

Если считать, что температура окружающей среды не изме­няется, то 2Rпp будет постоянным. Тогда уравнение (4) примет вид

При изменении сопротивления Rt мост можно уравновесить изменением величины сопротивления реохорда R2.

Это была так называемая двухпроводная схема включения ТС в измерительный мост.

Преимущества трехпроводной схемы одсоединения термопреобразователя сопротивления

В тех случаях, когда коле­бания температуры среды, в кото­рой находятся соединительные провода, значительны и погреш­ность при измерении может пре­высить допустимую величину, применяют трехпроводную сис­тему подключения термометра (рис.6). При таком присоединении сопротивление одного провода Rnp приба­вляется к сопротивлению Rt,сопротивление второго провода - к переменному сопротивлению R2 [1].

Уравнение равновесия моста принимает вид

Rt + Rпр = (R2 + Rпр)* (R3/R1).

В случае симметричного моста (R1 = R3,) получим:

Rt +Rпр = R2 + Rпр, т.е. Rt=R2.

Таким образом нет необходимости при изменении температуры в помещении учитывать изменение Rпр.

Автоматические уравновешенные мосты. В автоматических электронных уравновешен­ный мостах движок реохорда перемещается не вручную, а автоматически. Измерительная схема таких мостов питается как постоянным, так и переменным током. В автоматических мостах переменного тока решающее значение имеют активные сопротивления, поэтому выведенные выше соотношения для мостов постоянного тока сохраняются и для автоматических мостов переменного тока. Последние имеют ряд преимуществ перед мостами постоянного тока: измерительная схема питается от одной из обмоток силового трансформатора электронного усилителя, т. е. не требуется дополнительного источника питания (сухого элемента) и отпадает необходимость в применении вибрационного преобразователя. [1].

Существуют различные модификации автоматических уравновешенных мостов, однако принцип их работы одинаков. В качестве примера здесь рассматривается принципиальная схема электронного автоматического уравновешенного моста на переменном токе (рис. 7). Постоянные сопротивления R1, R2, R3 и R4 измерительной схемы выполнены из манганина, а рео­хорд Rpиз манганина или специального сплава. Измеритель­ная схема питается переменным током напряжения 6,3 В.

Рис. 7. Принципиальная схема авто­матического уравновешенного моста, работающего на переменном токе

Напряжение разбаланса на вершинах моста а и Ь подается на вход электронного усилителя. В нем оно усиливается до величины, достаточной для приведения в действие реверсивного электродвигателя РД. Этот двигатель, вращаясь в ту или другую сторону (в зависимости от знака разбаланса), через систему пере­дач перемещает движок реохорда, уравновешивая измерительную схему моста, а также перемещает показывающую стрелку. Если мост находится в равновесии, то реверсивный двигатель не вра­щается, так как напряжение на вход электронного усилителя не подается.

Серийно изготовляемые электронные автоматические уравно­вешенные мосты могут быть использованы для измерения темпе­ратуры полупроводниковыми термосопротивлениями. В связи с большой разницей в характеристиках металлических термоме­тров сопротивления и полупроводниковых термосопротивлений измерительную схему моста следует рассчитать.

Неуравновешенные мосты. Возможность непосредственного отсчета температуры - преимущество неуравновешенного моста перед лабораторным уравновешенным мос­том. На принципиальной схеме неурав­новешенного моста (рис. 8) в которой R1, R2 и R3 - постоянные сопротивления плеч моста; R - реостат; RK - контроль­ное сопротивление; Rt - сопротивление термо­метра; Iм - сила тока, протекаю­щего по рамке милливольтметра [1].

Для контроля разности потен­циалов в схему моста параллельно термометру включается манганиновое контрольное сопротивление Rк, равное сопротивлению термометра при опре­деленной температуре, отмеченной красной чертой на шкале милливольт­метра [1].

Для контроля разности потенциалов Uab переключатель ста­вят в положение 2 и с помощью реостата R устанавливают стрелку мил­ливольтметра точно на красной черте. После этого переклю­чатель ставят в положение 1 и по шкале снимают отсчет, соответ­ствующий температуре термометра.

Неуравновешенные мосты питаются от батареи или от сети (через трансформатор и выпрямитель). Показания неуравновешенных мостов зависят от напряжения Uab,, поэтому они не используются для промышленных измерений. Эти мосты используются иногда в лабораторной практике, а также в измерительных схемах других приборов

В технике обычно применяют приборы, с помощью которых измерения производят лишь с определенной заранее заданной и установленной ГОСТом допустимой основной (при нормальных условиях) при­веденной относительной погрешностью. По ее величине измерительные при­боры делят на классы точности 0,05 — 4,0. Промышленные логометры и автоматические уравновешенные мосты в большин­стве случаев выпускаются с классами точности 0,5; 1,0; 1,5. Например, прибор класса 1,5 имеет максимально допустимую основную приведенную относительную погрешность ±1,5%. Класс точности прибора обычно указывают на его шкале.

13