Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
0233145_A2D69_otvety_k_kandidatskomu_ekzamenu_po_filosofii_nauki.doc
Скачиваний:
208
Добавлен:
01.01.2020
Размер:
2.76 Mб
Скачать

Особенности становления и основные принципы неклассической науки.

Дальнейшее развитие науки вносит существенные отклонения от классических ее канонов: открытие Ш. Кулоном (1736-1806) закона притяжения электрических зарядов с противоположными знаками, введение английским химиком и физиком М. Фарадеем (1791-1867) понятия электромагнитного поля, создание английским ученым Дж. Максвеллом (1831-1879) математической теории электромагнитного поля. В конце 19 – нач. 20 в. становление квантовой механики явно показало зависимость физической реальности от наблюдений. Это привело к переформулировке классического принципа автономности объекта от средств познания и введению принципа дополнительности в каче­стве основного методологического средства.

Основные открытия: Пьер Кюри и Мария Склодовская-Кюри в 1898 г. открывают явление называют радиоактивности. В 1897 г. английский физик Дж. Томсон (1856-1940) открывает составную часть атома - электрон, создает первую модель атома. В 1900 г. немецкий физик М. Планк (1858-1947) предложил новый подход: рассматривать энергию электромагнитного излучения величину дискретную, которая может передаваться только отдельными, хотя и очень небольшими, порциями - квантами. На основе этой гениальной догадки ученый не только получил уравнение теплового излучения, но она легла в основу квантовой теории. Английский физик Э. Резерфорд (1871-1937) экспериментально устанавливает, что атомы имеют ядро, в котором сосредоточена вся их масса, а в 1911 г. создает планетарную модель строения атома. Датский физик Н. Бор (1885-1962) создал квантовую модель атома (модель Резерфорда-Бора). В 1924 г. французский физик Луи де Бройль (1892-1987) выдвинул идею о двойственной, корпускулярно-волновой природе не только электромагнитного излучения, но и других микрочастиц. В 1934 г. французские физики Ирен (1897-1956) и Фридерик Жолио-Кюри (1900-1958) открыли искусственную радиоактивность. Но поистине революционный переворот в физической картине мира совершил великий физик-теоретик А. Эйнштейн (1879-1955), создавший специальную (1905) и общую (1916) теорию относительности, считая, что пространство и время органически связаны с материей и между собой. Тем самым задачей теории относительности становится определение законов четырехмерного пространства, где четвертая координата - время. Получает дальнейшее развитие генетика, в основе которой лежат законы Менделя и хромосомная теория наследственности американского биолога Т. Ханта (1866-1945). Не менее значительные достижения были отмечены в области астрономии. Астрономы и астрофизики пришли к выводу, что Вселенная находится в состоянии непрерывной эволюции. Создается наука, нацеленная на изучение и освоение космического пространства – космонавтика и кибернетика. На основе достижений физики развивается химия, особенно в области строения вещества. Создаются такие химические дисциплины, как физикохимия, стереохимия, химия комплексных соединений, начинается разработка методов органического синтеза.

Основные принципы:

  • отвергается объективизм классической науки, отбрасывается представление реальности как чего-то не зависящего от средств ее познания, субъективного фактора.

  • осмысливаются связи между знаниями объекта и характером средств и операций деятельности субъекта. Экспликация этих связей рассматривается в качестве условий объективно-истинного описания и объяснения мира;

  • парадигма относительности, дискретности, квантования, вероятности, дополнительности.

  • введение объектов осуществляется на пути математизации, которая выступает основным индикатором идей в науке. Математизация ведет к повышению уровня абстракции теоретического знания, что влечет за собой потерю наглядности.

  • изменяется понимание предмета знания: им стала теперь не реальность "в чистом виде", как она фиксируется живым созерцанием, а некоторый ее срез, заданный через призму принятых теоретических и операционных средств и способов ее освоения субъектом.

  • наука стала ориентироваться не на изучение вещей как неизменных, а на изучение тех условий, попадая в которые они ведут себя тем или иным образом.

  • принцип экспериментальной проверяемости наделяется чертами фундаментальности, т.е. имеет место не "интуитивная очевидность", а "уместная адаптированность".

  • концепция монофакторного эксперимента заменилась полифакторной: отказ от изоляции предмета от окружающего воздействия якобы для "чистоты рассмотрения", признание зависимости определенности свойств предмета от динамичности и комплексности его функционирования в познавательной ситуации, динамизация представлений о сущности объекта

  • переход от исследования равновесных структурных организаций к анализу неравновесных, нестационарных структур, ведущих себя как открытые системы.

НЕКЛАССИЧЕСКАЯ НАУКА. СТАНОВЛЕНИЕ И ОСОБЕННОСТИ

В конце ХIХ - начале XX в. становление квантовой механики явно показало зависимость физической реальности от наблюдений. Это привело к переформулировке классического принципа автономности объекта от средств познания и введению принципа дополнительности в каче­стве основного методологического средства. Если в классической науке универсальным способом задания объектов теории были операции абстракции и непосредственной генерализации наличного эмпирического материала, то в неклассической введение объектов осуществляется на пути математизации, которая выступает основным индикатором идей в науке, приводящих к созданию новых ее разделов и теорий. Математизация ведет к повышению уровня абстракции теоретического знания, что влечет за собой потерю наглядности.Переход от классической науки к неклассической характеризует та революционная ситуация, которая заключается во вхождении субъекта познания в "тело" знания в качестве его необходимого компонента. Изменяется понимание предмета знания: им стала теперь не реальность "в чистом виде", как она фиксируется живым созерцанием, а некоторый ее срез, заданный через призму принятых теоретических и операционных средств и способов ее освоения субъектом. Поскольку о многих характеристиках объекта невозможно говорить без учета средств их выявления, постольку порождается специфический объект науки, за пределами которого нет смысла искать подлинный его прототип. Выявление относительности объекта к научно-исследовательской деятельности повлекло за собой то, что наука стала ориентироваться не на изучение вещей как неизменных, а на изучение тех условий, попадая в которые они ведут себя тем или иным образом, Научный факт перестал быть проверяющим. Теперь он реализуется в пакете с иными внутритеоретическими способами апробации знаний: принцип соответствия, выявление внутреннего и когерентного совершенства теории. Факт свидетельствует, что теоретическое предположение оправдано для определенных условий и может быть реализовано в некоторых ситуациях. Принцип экспериментальной проверяемости наделяется чертами фундаментальности, т.е. имеет место не "интуитивная очевидность", а "уместная адаптированность". Концепция монофакторного эксперимента заменилась полифакторной: отказ от изоляции предмета от окружающего воздействия якобы для "чистоты рассмотрения", признание зависимости определенности свойств предмета от динамичности и комплексности его функционирования в познавательной ситуации, динамизация представлений о сущности объекта - переход от исследования равновесных структурных организаций к анализу неравновесных, нестационарных структур, ведущих себя как открытые системы. Это ориентирует исследователя на изучение объекта как средоточия комплексных обратных связей, возникающих как результирующая действий различных агентов и контрагентов. На основе достижений физики развивается химия, особенно в области строения вещества. Развитие квантовой механики позволило установить природу химической связи, под последней понимается взаимодействие атомов, обусловливающее их соединение в молекулы и кристаллы. Создаются такие химические дисциплины, как физикохимия, стереохимия, химия комплексных соединений, начинается разработка методов органического синтеза.Становление неклассической рациональности, таким образом, привело к коренным изменениям оснований научного знания. В сфере идеалов и норм исследования происходит отказ от прямолинейного онтологизма и возникает понимание относи­тельной истинности теорий и картин природы, выработанных на том или ином этапе естествознания. Допускается истинность нескольких, отличающихся друг от друга, конкретных теоретичес­ких описаний одной и той же реальности. Возникает понимание того, что субъект познания детерминирован определенной научной традицией, а знание относительно по отношению к реальности и средствам познания. Принимаются объяснения со ссылками на средства познавательной деятельнос­ти. Объективной базой таких изменений служат открытие зависи­мости поведения элементарных частиц от средств исследования в атомной физике, обусловленности знания исходной точкой зре­ния в специальной теории относительности и релятивности онто­логии в общей теории относительности. Происходит также утрата наглядности, поскольку становятся понятными концептуальная нагруженность фактов, и отказ от определенности (точности) в пользу прагматичности, инструментальной эффективности. Новые идеалы и нормы обеспечивали расширение поля иссле­дуемых объектов. В нем появились сложные объекты, характеризу­ющиеся многоуровневой организацией, стохастическим взаимодей­ствием элементов, существованием управления и обратных связей, обеспечивающих целостность системы. Возникла статистическая схема детерминации, позволяющая учитывать роль случайностей в процессах развития. На этапе неклассической науки были созданы предпосылки для построения целостной системы природы, в рам­ках которой прослеживалась иерархическая организация Вселенной как динамического единства. Эти сдвиги сопровождались формированием новых философ­ских оснований науки. Субъект познания рассматривается как де­терминированный окружающим миром, поэтому содержание на­ших знаний полагалось определенным не только устройством са­мой природы, но и способом постановки вопросов. Новую трактовку получил и объект познания. Он понимается не как тело, а как процесс, воспроизводящий устойчивые состояния. Важную роль при описании динамики системы начинает играть категории случайности, возможности и действительности. Быстрое изменение техники и технологии благодаря примене­нию в производстве научных знаний — характерная черта техноген­ной цивилизации. Наиболее ярко она проявилась в XX веке. В это же время становятся заметными и негативные последствия внедре­ния научных достижений в практику, что приводит к развитию так называемых контрнаучных движений и распространению антисциентизма. Ценность научной рациональности ставится под сомнение.