Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Mechanical Properties of Ceramics and Composites

.pdf
Скачиваний:
340
Добавлен:
15.11.2014
Размер:
6 Mб
Скачать

420

Chapter 6

The Science of Ceramic Machining and Surface Finishing II (B. J. Hockey and R.

W.Rice, eds.). National Bureau of Standards Special Publication 562 (US Government Printing Office), Washington, DC, 1979, pp. 429–454.

81.H. Neuber and A. Wimmer. Experimental Investigations of the Behavior of Brittle Materials at Various Ranges of Temperature. AFML–TR–68–23, 1968.

82.R. W. Davidge and G. Tappin. The Effects of Temperature and Environment on the Strength of Two Polycrystalline Aluminas. Proc. Brit. Cer. Soc. 15:47–60, 1970.

83.Reports of the AVCO Corp., Lowell, Mass., on Microstructure Studies of Polycrystalline Refractory Oxides for US Naval Air Systems Command contracts, 1966–1968, e.g., W. H. Rhodes, D. J. Sellers, R. M. Cannon, A. H. Heuer, W. R. Mitchell, and P. Burnett, Summary report AVSSD-0098-68-RR for Contract N000- 19-67-C-0336, 1968.

84.R. M. Gruver, W. A. Sotter, and H. P. Kirchner. Fractography of Ceramics. Summary Report, Naval Air Systems Command, Report for Contract No. N00019-73- C-0356, Nov. 22, 1974.

85.W. B. Crandall, D. H. Chung, and T. J. Gray. The Mechanical Properties of UltraFine Grain Hot Pressed Alumina. Mechanical Properties of Engineering Ceramics (W. W. Kriegel and H. Palmour III, eds.). Wiley Interscience, New York, 1961, pp. 349–376.

86.R. J. Charles. Static Fatigue: Delayed Fracture Studies of the Brittle Behavior of Ceramic Materials Technical Report No. ASD-TR-628, 370-404, Aeronautical Systems Division, Wright Patterson AFG, Ohio, 1962.

87.A. H. Heuer and J. P. Roberts. The Influence of Annealing on the Strength of Corundum Crystals. Proc. Brit. Cer. Soc. 6:17–27, 1966.

88.R. W. Rice. Machining of Ceramics. Ceramics for High Performance Applications (J. J. Burke, A. E. Gorum, and R. N. Katz, eds.). Brook Hill, Chestnut Hill, MA, 1974, pp. 287–343.

89.J. B. Wachtman, Jr., and L. H. Maxwell. Strength of Synthetic Single Crystal Sapphire and Ruby as a Function of Temperature and Orientation. J. Am. Cer. Soc. 42(9):432–433, 1959.

90.J. Congleton, N. J. Petch, and S. A. Shiels. The Brittle Fracture of Alumina Below 1000°C. Phil. Mag. 19(160):795–807, 1969.

91.E. A. Jackman and J. P. Roberts. On the Strength of Polycrystalline and Single Crystal Corundum. Trans. Brit. Cer. Soc. 54(7):389–398, 1955.

92.S. W. Freiman. Effect of Environment on Fracture of Ceramics. Ceramurgia International 2(3):111–118, 1976.

93.C. C. McMahon. Relative Humidity and Modulus of Rupture. Am. Cer. Soc. Bull. 58(9):873, 1979.

94.W. B. Rotsey, K. Veevers, and N. R. McDonald. The Effect of Strain Rate, Environment, and Surface Condition on the Modulus of Rupture of Beryllia. Proc. Brit. Cer. Soc. 7:205–219, 1967.

95.W. H. Rhodes, R. M. Cannon, Jr., and T. Vasilos. Stress-Corrosion Cracking in Polycrystalline MgO. Fract. Mech. Cer. 2 (R. C. Bradt, D. P. H. Hasselman, and F.

F.Lange, eds.). Plenum Press, New York, 1973, pp. 709–733.

Grain Effects on Thermal Shock Resistance

421

96.E. K. Beauchamp and S. L. Monroe. Effect of Crack-Interface Bridging on Subcritical Crack Growth in Ferrites. J. Am. Cer. Soc. 72(7):1179–1184, 1984.

97.A. Fort, D. Sharp, B. Ash, K. Papworth, and D. Reed. Influence of Liquid Environments on the Strength of Ferrite Memory Cores. J. Am. Cer. Soc. 55(6):329, 1972.

98.S. L. Dole, O. Hunter, Jr., F. W. Calderwood, and D. J. Bray. Microcracking of Monoclinic HfO2. J. Am. Cer. Soc. 61(11–12):486–490, 1978.

99.K. R. McKinney, B. A. Bender, R. W. Rice, and C. Cm. Wu, Jr. Slow Crack Growth in Si3N4 at Room Temperature. J. Mat. Sci. 26:6467–6472, 1991.

100.M. E. O’Day and G. L. Leatherman. Static Fatigue of Aluminum Nitride Packaging Materials. Intl. J. Microcircuits Elect. Pack. 16(1):41–48, 1993.

101.C. Cm. Wu, K. R. McKinney, S. W. Freiman, G. S. White, R. W. Rice, L. E. Dolhert, and J. H. Enloe. Slow Crack Growth in AlN. To be published.

102.P. Shahinian. High-Temperature Strength of Sapphire Filament. J. Am. Cer. Soc. 54(1):67–68, 1971.

103.G. F. Hurley. Mechanical Behavior of Melt-Grown Sapphire at Elevated Temperature. Applied Polymer Symp. 21:121–130, 1973.

104.H. Sayir, K. P. D. Lagertof, M. R. DeGuire, and A. Sayir. Bend Strength of Undoped and Doped Laser Grown Sapphire Fibers. Presented in 16th Annual Conference and Exposition on Composites and Advanced Ceramics, Cocoa Beach, Florida, January 7–10, 1991.

105.S. C. Carniglia. Petch Relation in Single-Phase Oxide Ceramics. J. Am. Cer. Soc. 48(11):580–583, 1965.

106.S. C. Carniglia. Reexamination of Experimental Strength-vs.-Grain-Size Data for Ceramics. J. Am. Cer. Soc. 55(5):243–249, 1972.

107.H. P. Kirchner. The Elevated Temperature Flexural Strength and Impact Resistance of Alumina Ceramics Strengthened by Quenching. Mat. Sci. Eng. 13:63–69, 1974.

108.H. P. Kirchner. Strengthening of Ceramics, Treatments, Tests and Design Applications. Marcel Dekker, New York, 1979, p. 88.

109.H. Mizuta, K. Oda, Y. Shibasaki, M. Maeda, M. Machida, and K. Oshima. Preparation of High Strength and Translucent Alumina by Hot Isostatic Pressing. J. Am. Cer. Soc. 75(2):469–473 (1992).

110.J. R. McLaren and R. W. Davidge. The Combined Influence of Stress, Time and Temperature on the Strength of Polycrystalline Alumina. Proc. Br. Cer. Soc., Mechanical Properties of Cer. 2 (R. W. Davidge, ed.). 25:151–167, 5/1975.

111.N. M. Parikh. Factors Affecting Strength and Fracture of Nonfissionable Ceramic Oxides. Nuclear Applications of Nonfissionable Ceramics (A. Boltax and J. H. Handwerk, eds.). American Nuclear Soc., Hindsdale, IL, 1966, pp. 31–56.

112.R. M. Spriggs and T. Vasilos. Effect of Grain Size on Transverse Bend Strength of Alumina and Magnesia. J. Am. Cer. Soc. 46(5):224–228, 1963.

113.R. M. Spriggs, J. B. Mitchell, and T. Vasilos. Mechanical Properties of Pure, Dense Aluminum Oxide as a Function of Temperature and Grain Size. J. Am. Cer. Soc. 47(7):323–327, 1964.

114.G. Orange, D. Turpin-Launay, P. Goeuriot, G. Fantozzi, and F. Thevenot. Mechan-

ical Behavior of a Al2O3–AlON composite Ceramic Material (Aluminalon). Sci. Cer. 12:661–666, 1984.

422

Chapter 6

115.J. C. Romine. New High-Temperature Ceramic Fiber. Cer. Eng. Sci. Proc. 8(7–8):755–765, 1987.

116.M. H. Stacey. Developments in Continuous Alumina-Based Fibers. Br. Cer. Trans. 87:168–172, 1977.

117.J. E. Bailey and H. A. Hill. Ceramic Fibers for the Reinforcement of Gas Turbine Blades 5 (W. W. Kreigel and H. Palmour III, eds.). Plenum Press, New York, 1971, pp. 341–359.

118.J. B. Wachtman, Jr., W. E. Tefft, D. G. Lam, Jr., and C. S. Apstein. Exponential Temperature Dependence of Young’s Modulus for Several Oxides. Phys. Rev. 122(6):1754–1759, 1961.

119.J. B. Wachtman, Jr., and D. G. Lam, Jr. Young’s Modulus of Various Refractory Materials as a Function of Temperature. J. Am. Cer. Soc. 42(5):254–260, 1959.

120.R. Duff and P. Burnett. Microstructure Studies of Polycrystalline Refractory Oxides. Summary Report for Contract No. 3-65-0316-f, 1966.

121.A. Higashi. Mechanisms of Plastic Deformation in Ice Single Crystals. Physics of Snow and Ice, Intl. Conf. on Low Temperature Science, I. Conf. on Physics of Snow and Ice (H. Ôura, ed.). Bunyeido, Sapporo, Japan, 1967, pp. 277–289.

122.M. L. Kronberg. Dynamical Flow Properties of Single Crystals of Sapphire I. J. Am. Cer. Soc. 45(6):274–279, 1962.

123.S. J. Jones and J. W. Glen. The Effect of Dissolved Impurities on the Mechanical Properties of Ice Crystals. Phil. Mag. 19(157):13–24, 1969.

124.E. M. Schulson, S. G. Hoxie, and W. A. Nixon. The Tensile Strength of Cracked Ice. Phil. Mag. A 59(2):303–311, 1989.

125.J. E. Dykins. Tensile Strength of Sea Ice Grown in a Confined System. Physics of Snow and Ice, Intl. Conf. on Low Temperature Science, I. Conf. on Physics of Snow and Ice (H. Ôura, ed.). Bunyeido, Sapporo, Japan, 1967, pp. 523–537.

126.G. G. Bentle and R. M. Kniefel. Brittle and Plastic Behavior of Hot-Pressed BeO. J. Am. Cer. Soc. 48(11):570–577, 1965.

127.G. G. Bentle and K. T. Miller. Dislocations, Slip, and Fracture in BeO Single Crystals. J. Appl. Phys. 38(11):4248–4255, 1967.

128.R. E. Fryxell and B. A. Chandler. Creep, Strength, Expansion, and Elastic Moduli of Sintered BeO as a Function of Grain Size, Porosity, and Grain Orientation. J. Am. Cer. Soc. 47(6):283–291, 1964.

129.B. A. Chandler, E. C. Duderstadt, and J. F. White. Fabrication and Properties of Extruded and Sintered BeO. J. Nuc. Mat. 8(3):329–347, 1963.

130.M. L. Stehsel, R. M. Hale, and C. E. Waller. Modulus of Rupture Measurements on Beryllium Oxide at Elevated Temperatures. Mechan. Prop. of Eng. Cer. 16 (W. Kriegel and H. Palmour III, eds.). Interscience, New York, 1961, pp. 225–235.

131.S. C. Carniglia, R. E. Johnson, A. C. Hott, and G. G. Bentle. Hot Pressing for Nuclear Applications of BeO; Process, Product, and Properties. J. Nuc. Mat. 14:378–394, 1964.

132.D. A. Shockey and G. W. Groves. Effect of Water on Toughness of MgO Crystals. J. Am. Cer. Soc. 51(6):299–303, 1968.

133.K. R. Janowski and R. C. Rossi. Mechanical Degradation of MgO by Water Vapor. J. Am. Cer. Soc. 51(8):453–455, 1968.

Grain Effects on Thermal Shock Resistance

423

134.R. W. Rice. CaO: II, Properties. J. Am. Cer. Soc. 52(8):428–436, 1969.

135.S. M. Copley and J. A. Pask. Plastic Deformation of MgO Single Crystals up to 1600°C. J. Am. Cer. Soc. 48(3):139–146, 1965.

136.D. S. Thompson and J. P. Roberts. Flow of Magnesium Oxide Single Crystals. J. Appl. Phys. 433–434, 1960.

137.R. W. Rice. Strength and Fracture of Hot-Pressed MgO. Proc. Brit. Cer. Soc. 20:329–364, 1972.

138.A. G. Evans, D. Gilling, and R. W. Davidge. The Temperature-Dependence of the Strength of Polycrystalline MgO. J. Mat. Sci. 5:187–197, 1970.

139.R. W. Rice. Deformation, Recrystallization, Strength, and Fracture of PressForged Ceramic Crystals. J. Am. Cer. Soc. 55(2):90–97, 1972.

140.R. W. Rice. Effects of Hot Extrusion, Other Constituents and Test Temperature on the Strength and Fracture of Polycrystalline MgO. J. Am. Cer. Soc. 76(12):3009–3018, 1993.

141.R. B. Day and R. J. Stokes. Mechanical Behavior of Polycrystalline Magnesium Oxide at High Temperatures. J. Am. Cer. Soc. 49(7):345–354, 1966.

142.F. P. Knudsen. Dependence of Mechanical Strength of Brittle Polycrystalline Specimens on Porosity and Grains Size. J. Am. Cer. Soc. 42(8):376–388, 1959.

143.C. E. Curtis and J. R. Johnson. Properties of Thorium Oxide Ceramics. J. Am. Cer. Soc. 40(2):63–68, 1957.

144.M. D. Burdick and H. S. Parker. Effect of Particle Size on Bulk Density and Strength Properties of Uranium Dioxide Specimens. J. Am. Cer. Soc. 39(5):181–187, 1956.

145.F. P. Knudsen, H. S. Parker, and M. D. Burdick. Flexural Strength of Specimens Prepared from Several Uranium Dioxide Powders; Its Dependence on Porosity and Grain Size and the Influence of Additions of Titania. J. Am. Cer. Soc. 43(12):641–647, 1960.

146.A. G. Evans, and R. W. Davidge. The Strength and Fracture of Stoichiometric Polycrystalline UO2. J. Nuc. Mat. 33:249–260, 1969.

147.R. J. Beals, J. H. Handwerk, and G. M. Dragel. High Temperature Mechanical Properties of Uranium Compounds. In High Temperature Technology, Proc, Third Intl. Symp. on High Temp. Tech. in Pacific Grove, CA, Intl. Union of Pure & Applied Chem., Butterworths, London, 1968, pp. 265–278.

148.R. F. Canon, J. T. A. Roberts, and R. J. Beals. Deformation of UO2 at High Temperatures. J. Am. Cer. Soc. 54(2):105–112, 1971.

149.C. R. Kennedy and G. Bandyopadhyay. Thermal-Stress Fracture and Fractography in UO2. J. Am. Cer. Soc. 59(3–4):176–177, 1976.

150.H. M. Kandil, J. D. Greiner, and J. F. Smith. Single-Crystal Elastic Constants of Yttria-Stabilized Zirconia in the Range of 20° to 700°C. J. Am. Cer. Soc. 6(5):341–346, 1984.

151.J. B. Wachtman, Jr., and W. C. Corwin. Internal Friction in ZrO2 Containing CaO. J. Res., National Bureau of Standards A. Physics and Chemistry 69A(5):457–460, 9–10/1965.

152.M. Shimada, D. Matsushita, S. Kuratani, T. Okamoto, M. Koizumi, K. Tsukuma and T. Tsukidate. Temperature Dependence of Young’s Modulus and Internal

424

Chapter 6

Friction in Alumina, Silicon Nitride, and Partially Stabilized Zirconia Ceramics.

J.Am. Cer. Soc. 67(2):C-23–24, 1984.

153.J. W. Adams, D. C. Larsen, R. Ruh, and K. S. Mazdiyasni. Young’s Modulus, Flexure Strength, and Fracture of Yttria-Stabalized Zirconia versus Temperature. J. Am. Cer. Soc. 80(4):903–908, 1997.

154.S. L. Dole. Elastic Properties of Hafnium and Zirconium Oxides Stabilized with Praseodymium or Terbium Oxide. J. Am. Cer. Soc. 66(3):C-47–49, 1983.

155.A. S. Drachinskii, V. A. Dubok, V. V. Lashneva, V. G. Vereshchak, and V. V. Kovylyaev. Features of the Temperature Dependence of Failure Stress for Zirconium Dioxide. Problemy Prochnosti 3:368–370, 1987.

156.R. W. Rice. Ceramic Fracture Features, Observations, Mechanisms, and Uses. Fractography of Ceramic and Metal Failure, ASTM STP 827 (J. J. Mecholosky, Jr., and S. R. Powell, eds.). 1984, pp. 5–103.

157.R. A. Penty. Pressure-Sintering Kinetics and Mechanical Properties of High-Pu- rity, Fine-Grained Mullite. Ph.D. thesis. Lehigh University, 1972.

158.V. Mandorf and J. Hartwig. High Temperature Properties of Titanium Diboride. High Temperature Materials II (G. Ault, W. Barclay, and H. Munger, eds.). Interscience, New York, 1963, pp. 455–467.

159.J. Matsushita, H. Naggashima, and H. Saito. Preparation and Mechanical Proper-

ties of TiB2 Composites Containing Ni and C. J. Cer. Soc. Jpn., Intl. Ed. 99:1047–1050, 1991.

160.R. A. Alliegro. Titanium Diboride and Zirconium Diboride Electrodes. The Encyclopedia of Electrochemistry (C. Hampell, ed.). Reinhold, New York, 1964, p. 1125.

161.D. Kalish, E. V. Clougherty, and K. Kreder. Strength, Fracture Mode, and Thermal Stress Resistance of HfB2 and ZrB2. J. Am. Cer. Soc. 52(1):30–36, 1969.

162.G. de With. High Temperature Fracture of Boron Carbide: Experiments and Simple Theoretical Models. J. Mat. Sci. 19:457–466, 1984.

163.G. A. Gogotsi, Yu. G. Gotosi, V. V. Kovylyaev, D. Yu. Ostrovoi, and V. Ya. Ivas`kevich. Behavior of Hot-Pressed Boron Carbide at High Temperature, II. Strength. Proshkovaya Met. 6(318):77–82, 1989.

164.M. Bougoin, F. Thevenot, J. Dubois, and G. Fantozzi. Synthèse et Characterization de Céramiques Denses en Carbure de Bore. J. Less Com. Met. 114:257–271, 1985.

165.G. A. Gogosti, Y. A. L. Groushevsky, O. B. Dashevskaya, Yu. G. Gogotsi, and V.

A.Lavrenko. Complex Investigation of Hot-Pressed Boron Carbide. J. Less Com. Met. 117:225–230, 1986.

166.G. W. Hollenberg and G. Walther. The Elastic Modulus and Fracture of Boron Carbide. J. Am. Cer. Soc. 63(11–12):610–613, 1980.

167.Yukio Takeda and Kunihiro Maeda. Mechanical Properties of High Thermal Conductive SiC Ceramics. J. Cer. Soc. Jpn. 99:699–700, 1991.

168.D. C. Larsen, J. W. Adams, L. R. Johnson, A. P. S. Teotia, and L. G. Hill. Ceramic Materials for Advanced Heat Engines, Technical and Economic Evaluation. Noyes, Park Ridge, NJ, 1985.

169.D. B. Miracle and H. A. Lipsitt. Mechanical Properties of Fine-Grained Substoichiometric Titanium Carbide. J. Am. Cer. Soc. 66(8):592–597, 1983.

Grain Effects on Thermal Shock Resistance

425

170.R. H. J. Hannink and M. J. Murray. Elastic Moduli Measurements of Some Cubic Transition Metal Carbides and Alloyed Carbides. J. Mat. Sci. 9:223–228, 1974.

171.T. K. Gupta. Strength Degradation and Crack Propagation in Thermally Shocked Al2O3. J. Am. Cer. Soc. 55(5):249–253, 1972.

172.T. K. Gupta. Critical Grain Size for Noncatastrophic Failure in Al2O3 Subjected to Thermal Shock. J. Am. Cer.Soc. 56(7):396–397, 1973.

173.H. Tomaszewski. Influence of Microstructure on the Thermomechanical Properties of Alumina Ceramics. Cer. Intl. 18:51–55, 1992.

174.C. C. Seatton and S. K. Dutta. Effect of Grain Size on Crack Propagation in Thermally Shocked B4C. J. Am. Cer. Soc. 57(5):228–229, 1974.

175.J. A. Capolla and R. C. Bradt. Thermal Shock Damage in SiC. J. Am. Cer. Soc. 56(4):214–218, 1973.

176.T. G. Langdon. The Role of Grain Boundaries in High Temperature Deformation. Mat. Sci. Eng. A166:67–79, 1993.

177.Y. Maehara and T. G. Langdon. Review: Superplasticity in Ceramics. J. Mat. Sci. 25:2275–2286, 1990.

178.G. D. Quinn. Fracture Mechanism Maps for Advanced Structural Ceramics. J. Mat. Sci. 25:4361–4376, 1990.

179.D. P. H. Hasselman. Single Crystal Elastic Anisotropy and the Mechanical Behavior of Polycrystalline Brittle Refractory Materials. Anisotropy in Single-Crystal Refractory Compounds (F. W. Vahldiek and S. A. Merson, eds.). Plenum Press, New York, 1968, pp. 247–265.

180.A. H. Heuer. Deformation Twinning in Corundum. Phil. Mag. 13(122):379–393, 1966.

181.P. F. Becher. Abrasive Surface Deformation of Sapphire. J. Am. Cer. Soc. 59(3–4):143–145, 1976.

182.P. F. Becher. Fracture-Strength Anisotropy of Sapphire. J. Am. Cer. Soc. 59(1–2):59–61, 1976.

183.W. D. Scott and K. K. Orr. Rhombohedral Twinning in Alumina. J. Am. Cer. Soc. 66(1):27–32, 1983.

184.H. M. Chan and B. R. Lawn. Indentation Deformation and Fracture of Sapphire. J. Am. Cer. Soc. 7(1):29–33, 1988.

185.B. E. Walker, Jr., R. W. Rice, R. C. Pohanka, and J. R. Spann. Densification and

Strength of BaTiO3 with LiF and MgO Additives. Am. Cer. Soc. Bull. 55(3):274–276, 1976.

186.J. J. Mecholsky, Jr. Private communication, 1998.

187.D. C. Harris. Overview of Sapphire Mechanical Properties and Stratagies for Strengthening Sapphire. Proc. 7th DoD Electromagnetic Windows Symp., Johns Hopkins Applied Phys. Lab. (D. C. Harris, ed.). 5/1998, pp. 310–318.

188.E. Savrun, C. Toy, and W. D. Scott. Axial Compression Testing of Single Crystal Sapphire. 7th DoD Electromagnetic Windows Symp., Johns Hopkins Applied Phys. Lab. (D. C. Harris, ed.). 5/1998, pp. 358–364.

189.F. Schmid and D. C. Harris. Effects of Crystal Orientation and Temperature on the Strength of Sapphire. J. Am. Cer. Soc. 81(4):885–893, 1998.

426

Chapter 6

190.E. Savrun, C. Toy, and W. D. Scott. Strengthening Sapphire by Microstructural Modifications. J. Am. Cer. Soc. 81(4):365–372, 1998.

191.D. C. Harris and L. F. Johnson. Navy Mechanical Test Results from the Sapphire Statistical Characterization and Risk Reduction Program. J. Am. Cer. Soc. 81(4):337–343. 1998.

192.T. M. Regan and D. C. Harris. High Temperature C-Axis Strengthened Sapphire. J. Am. Cer. Soc. 81(4):344–351, 1998.

193.R. W. Rice and R. C. Pohanka. Grain-Size Dependence of Spontaneous Cracking in Ceramics. J. Am. Cer. Soc. 62(11–12):559–563, 1979.

194.R. W. Rice, R. C. Pohanka, and W. J. McDonough. Effect of Stresses from Thermal Expansion Anisotropy, Phase Transformation and Second Phases on the Strength of Ceramics. J. Am. Cer. Soc. 63(11–12):703–710, 1980.

195.F. J. P. Clarke. Residual Strain and the Fracture Stress–Grain Size Relationship in Brittle Solids. ACTA Metallurgica 12:139–143, 1964.

196.M. K. Aghajanian, N. H. MacMillan, C. R. Kennedy, S. J. Luszcz, and R. Roy.

Properties and Microstructures of Lanxide Al2O3-Al Ceramic Composite Materials. J. Mat. Sci. 24:658–670, 1989.

197.R. W. Rice. Possible Effects of Elastic Anisotropy on Mechanical Properties of Ceramics. J. Mat. Sci. Lett. 13:1261–1266, 1994.

198.M. Weller and H. Schubert. Internal Friction, Dielectric Loss, and Ionic Conduc-

tivity of Tetragonal ZrO2-3% Y2O3 (Y-TZP). J. Am. Cer. Soc. 69(7):573–577, 1986.

199.J. S. Moya, R. Moreno, and J. Requena. Black Color in Partially Stabilized Zirconia. J. Am. Cer. Soc. 71(11):C-479–480, 1988.

200.R. W. Rice. Comment on “Black Color in Partially Stabilized Zirconia.” J. Am. Cer. Soc. 75(7):1745–1746, 1991.

201.R.W. Rice, K. R. McKinney, and R. P. Ingel. Grain Boundaries, Fracture, and Heat Treatment of Commercial Partially Stabilized Zirconia. J. Am. Cer. Soc. 64(12):C- 175–177, 1981.

202.J. B. Wachtman, Jr. Mechanical and Electrical Relaxation in ThO2 Containing CaO. Phys. Rev. 131(2):517–527, 1963.

203.J. J. Swab. Low Temperature Degradation of Y-TZP Materials. J. Mat. Sci. 26:6706–6714, 1991.

204.M. Hirano, T. Matsuyama, H. Inada, K. Suzuki, H. Yoshida, and M. Machida. Effect of Composition on Phase Stability Under Hydrothermal Conditions and Fracture Strength of Yttriaand Ceria-Doped Tetragonal Zirconia-Alumina Composites Fabricated by HIP. J. Cer. Soc. Jpn. 99(5):382–387, 1991.

205.I. Thompson and R. D. Rawlings. Effects of Liquid Environments on ZirconiaToughened Alumina, Part I, Chemical Stability. J. Mat. Sci. 27:2823–2830, 1992.

206.I. Thompson and R. D. Rawlings. Effects of Liquid Environments on ZirconiaToughened Alumina, Part II, Mechanical Properties. J. Mat. Sci. 27:2831–2839, 1992.

207.D. H. Chung and W. R. Buessem. The Elastic Anisotropy of Crystals. Proc. Intl. Symp. 2 (F. W. Vahldiek and S. A. Mersol, eds.). Plenum Press, New York, 1968, pp. 217–245.

Grain Effects on Thermal Shock Resistance

427

208.G. Simmons and H. Wang. Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook. MIT Press, Cambridge, Massachusetts, 1977.

209.P. Chantikul, S. J. Bennison, and B. R. Lawn. Role of Grain Size in the Strength and R-Curve Properties of Alumina. J. Am. Cer. Soc. 73(8):2419–2427, 1990.

210.R. W. Rice. Comment on “Role of Grain Size in the Strength and R-Curve Properties of Alumina.” J. Am. Cer. Soc. 76(7):1898–1899, 1993.

211.R. W. Rice. Ceramic Fracture Mode-Intergranular vs. Transgranular Fracture. In Fractography of Glasses and Ceramics III (V. Frechette, J. R. Varner, and G. Quinn, eds.). Am. Cer. Soc., Westerville, OH, 1996, pp. 1–53.

7

Grain Dependence of Hardness,

Compressive Strength, Wear,

and Related Behavior at

Elevated Temperatures

I.INTRODUCTION

This chapter complements the preceding one by completing the review of the grain dependence of mechanical properties of monolithic ceramics as a function of temperature. Hardness, compressive strength, wear, and related behavior are addressed, while the preceding chapter addressed crack propagation, toughness, and tensile strength. This chapter also compares the limited data on both tensile and compressive failure in the same material, i.e. the overall trend for the large difference between the two to disappear at higher temperatures, as in ductile metals, but for some differences to remain.

Unfortunately there is again a significant lack of data first simply as a function of only temperature, and especially also as a function of grain parameters (mainly size), though the extent of this limitation varies with the particular property. However, besides such direct data, there are three other sources of some information on the grain dependence as a function of temperature. First is the substantial data on such dependence of properties at 22°C reviewed in Chapters 4 and 5, and the fact that properties generally undergo gradual changes with increasing T, so grain dependences are also expected to change gradually. Second is information on the grain dependence of one property versus temperature and the correlations of this property with other related ones, e.g. of E and H

428

Grain Dependence at Elevated Temperatures

429

with each other and with other mechanical properties as discussed in Chapters 2–6. Third is information on the temperature dependence of these properties for single crystals, since these reflect both the limit of G and of the orientation dependence of textured polycrystalline bodies.

Thus hardness, compressive strength (σC), wear, and related behavior are also affected by temperature-driven changes in underlying properties such as E and by the onset and increase in various deformation, e.g. creep, processes. However, there are other basic effects due to the inherent reduction of stresses for plastic deformation as temperature (T) increases due to two counter effects. On the one hand, increased plasticity will reduce local fracture and hence cracking associated with hardness indentations, compressive stressing, wear, and erosion. On the other hand, increased plasticity also means reduced hardness and more penetration of asperities into mating wear surfaces as T increases. Further, basic changes can occur in the mechanisms of failure, and hence in their G dependence. Thus, for example, increased plasticity in particulates causing erosion, or in the surfaces they impact, can change erosion, e.g. shifting of the angle for maximum erosion from 90° (i.e. normal) to the eroding surface for brittle processes to 30° for ductile erosion processes [1,2]. At higher temperatures, increased bonding (e.g. via welding) and increased chemical reaction can also become important factors in erosion, and especially wear. Similarly, repeated stressing, i.e. fatigue testing as temperatures increase, can be compounded by changes from mainly or exclusively brittle fracture to increasing effects of various nonelastic processes (again with an inverse effect of strain rate). Besides affecting properties, increased plastic deformation and reduction of brittle fracture as temperature increases also affects strength tests. Thus while alignment and interface stresses are important issues in compressive testing of brittle materials, they become less critical as the degree of plastic deformation increases as T increases. Similarly, though receiving almost no study, hardness-related cracking should decrease, i.e. as T increases.

While changes in properties considered in this and the previous chapter are generally gradual with increasing temperature, three factors should be noted. First, there can be important changes at modest temperatures, e.g. such as shown for the tensile strength of Al2O3 (Fig. 6.12), which are indicated as correlating with changes of hardness, and especially compressive strength, of Al2O3 (Fig. 7.6). Second, there can be substantial and rapid changes in properties as a function of temperature in the limited, but important, cases where properties have been measured through a phase transformation, e.g. as mainly seen in the more extensive HT data. Third, though not commonly noted, as macroplasticity occurs in ceramics at higher temperatures, the differences in tensile versus compressive strengths decrease, especially for single crystals, as does the HC ratio.