Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Mechanical Properties of Ceramics and Composites

.pdf
Скачиваний:
340
Добавлен:
15.11.2014
Размер:
6 Mб
Скачать

690

Chapter 12

32.J. J. Mecholsky Jr., S. W. Freiman, and R. W. Rice. Fracture Surface Analysis of Ceramics. J. Mat. Sci. 11:1310–1319, 1976.

33.R. W. Rice. Machining Flaw Size–Tensile Strength Dependence on Microstructures of Monolithic and Composite Ceramics, to be published.

34.R. W. Rice. Fractographic Determination of KIC and Effects of Microstructural Stresses in Ceramics. Fractography of Glasses and Ceramics. Ceramic Trans. 17 (J. R. Varner and V. D. Frechette, eds.). Am. Cer. Soc., Westerville, OH, 1991, pp. 509–545.

35.H. P. Kirchner and R. M. Gruver. Fracture Mirrors in Alumina Ceramics. Phil. Mag. 27:1433–1446, 1973.

36.T. L. Jessen and D. Lewis III. Effect of Crack Velocity on Crack Resistance in Brit- tle-Matrix Composites. J. Am. Cer. Soc. 72(5):812–821, 1989.

37.T. L. Jessen and D. Lewis III. Effect of Composite Layering on the Fracture Toughness of Brittle Matrix/Particulate Composites. Composites, 26(1):67–71, 1995.

38.D. B. Marshall, W. L. Morris, B. N. Cox, and M. S. Dadkhan. Toughening Mechanisms in Cemented Carbides. J. Am. Cer. Soc. 73(10):2938–2943, 1990.

39.D. Lewis and J. R. Spann. Fracture Features at Internal Fracture Origins in a Commercial Crystallized Glass. J. Am. Cer. Soc. 65(10):C173–174, 1984.

40.L. Ewart and S. Suresh. Crack Propagation in Ceramics Under Cyclic Loads. J. Mat. Sci. 22:1173–1192, 1987.

41.R. W. Rice. Microstructural Dependence of Fracture Energy and Toughness of Ceramics and Ceramic Composites Versus That of Their Tensile Strengths at 22°C. J. Mat. Sci. 31:4503–4519, 1996.

42.R. W. Rice. Porosity of Ceramics. Marcel Dekker, New York, 1998.

43.R. W. Rice. Processing of Ceramic Composites. Advanced Ceramic Processing and Technology 1 (J. G. P. Binner, ed.). Noyes, Park Ridge, NJ, 1990, pp. 123–213.

44.R. W. Rice. Ceramic Composites: Future Needs and Opportunities. Fiber Reinforced Ceramic Composites, Materials, Processing and Technology (K. S. Mazdiyasni, ed.). Noyes, Park Ridge, 1990, NJ, pp. 451–495.

45.R. W. Rice. Advanced Ceramic Materials and Processes. Design of New Materials (D. L. Cocke and A. Clearfield eds.).Plenum, New York, 1987, pp. 169–194.

46.T. Harai. CVD of Si3N4 and Its Codeposites. Emergent Process Methods for HighTechnology Ceramics, Materials Science Res. 17. Plenum Press, New York, 1984, pp. 329–345.

47.K. Hiraga, M. Hirabayashi, S. Hiyashi, and T. Hirai. High-Resolution Electron Mi-

croscopy of Chemically Vapor-Deposited β-Si3N4-TiN Composites. J. Am. Cer. Soc. 66(8):539–542, 1983.

48.A. G. Evans. Perspective on the Development of High-Toughness Ceramics. J. Am. Cer. Soc. 73(2):187–206, 1990.

49.M. P. Harmer, H. M. Chan, and G. A. Miller. Unique Opportunities for Microstructural Engineering with Duplex and Laminar Ceramic Composites. J. Am. Cer. Soc. 75(7):1715–1728, 1992.

Index

Acoustic emission, 106, 626, 629, 685

Ballistic impact

grain size effects, 314–317, 674 mechanisms, 297

Ceramic composites

ceramic-metal, 510–519, 576–580, 607

costs, 606

crack propagation, 461–472 crystallized glass, 490, 622, 637, 678 elastic moduli, 458–461, 472–481

correlation with strengths, 517, 568–569, 579

erosion, 610

eutectic, 508–510, 575, 608, 643, 646

flaw sizes, 568

fracture toughness, 461–472, 489–519 glass-ceramic, 538–547

grain size, 496, 570, 572, 646 toughness effects, 498

melt derived, 554–559 microcracking, 473, 518 natural, 3, 544–547, 640 nonoxide matrix, 563–568, 640

[Ceramic composites]

oxide matrix, 559–563, 640 particle-crack interactions, 461–472,

481–487, 511–512 particle size

nanoscale, 500

toughness effects, 500, 520 strength effects, 536–592

platelet, 572–575, 572, 574, 586, 589, 607–609, 629, 640, 641, 677, 684

scope, 3

whisker, 568–572, 569, 589, 607, 621, 629, 641

ZrO2 toughened, 462–463, 548–559, 621–623, 638, 650, 679

Ceramics, monolithic borides

other borides, 436

TiB2, 56, 80, 174–175, 260, 300, 310, 326, 393, 432, 444

ZrB2, 300 carbides

B4C, 80, 174–177, 197, 261, 300, 310, 338, 436

SiC, 74, 80, 107, 152–155, 222, 262, 310, 324, 334, 363, 368, 434, 436, 437

691

692

[Ceramics, monolithic] TiC, 326, 431

other carbides (including diamond), 156, 157, 255, 310, 436

nitrides

AlN, 178, 304, 310, 316, 326 BN, 300, 629–633

Si3N4, 78, 80, 179, 197, 219, 220, 265, 326, 368, 400, 436

other ceramics, 72, 78, 136, 145, 173, 194, 270, 278, 449

oxides

Al2O3, 55, 59, 62, 80, 81, 96, 157–165, 249–252, 272, 278, 301, 310, 315, 319, 323, 331, 332, 338, 357, 360, 368, 373, 378–380, 396, 433, 437, 439–440, 443, 445, 673

BaTiO3, 63, 137–138

BeO, 81, 165–166, 252–254, 310, 383

CaO, 139–140 ferrites, 73, 96 H2O, 381, 441

MgAl2O4, 60, 73, 78, 149–152, 258–259, 175, 361

MgO, 72, 80, 141–142, 197, 254, 274, 276, 303, 325, 338, 386, 433, 442, 443, 449

mullite, 362, 391, 433 other oxides, 55, 56, 81, 96,

170–173, 449 PZT, 55, 103 ThO2, 145, 387

TiO2, 55, 80, 81, 167, 255

UO2, 301, 388

Y2O3, 55, 72, 78, 145–146, 256, 453

ZrO2, 55, 86, 147–148, 167–169,

197, 257, 325, 366, 390, 433, 449 Compressive strength

additive effects, 302 composites, 604, 605, 646, 679 crystallized glasses, 608 failure, 296, 311, 441

grain size effects, 299–305, 551, 605 hardness relation, 305, 309–310, 674

Index

[Compressive strength] hydrostatic effects, 302–303 platelet composites, 608, 647 strain rate effects, 445

temperature dependence, 438–446 Crack

branching

toughness effects, 87, 642 bridging, 46, 502, 555, 642

and microcracking, 90 toughness effects, 52, 53, 87

healing, 643

propagation (see also SCG) scale effects, 47, 490

surface vs. interior, 307

velocity effects, 60, 487, 514, 650, 676

Creep, 354, 642, 645, 646, 650, 672

Elastic anisotropy composites, 641, 648 definition, 448

effects, 33, 49, 130, 284–286, 312, 354, 403, 409, 414

grain shape effects, 449 temperature dependence, 448–450,

453 Elastic moduli

composites, 458–461, 472–481, 621, 630, 641

hardness correlation, 650

strength correlation, 517, 568–569, 472–481, 648

temperature dependence, 353, 408–409, 414, 621, 649

Electrical breakdown microstructural effects, 9, 660

Environmental degradation, 64–65 Erosion, 298, 317–321, 610

Fatigue

composites, 487, 609 compressive, 307 mechanical, 635–637, 678 tensile, 105, 672

thermal shock, 633–635

Index

Fiber

elastic moduli, 621

strength-grain size dependence, 153, 154, 164

Fractography (see also fracture origins), 36, 106, 362, 391, 591–592, 642

Fracture mode, 44

composites, 481–486, 623–625, 642 EA effects, 49, 56

environmental effects, 50, 59, 91 grain effects, 55, 99, 502

mixed mode, 87 platelet composites, 503 and SCG, 665

thermal expansion anisotropy (TEA) effects, 56

Fracture origins large grains, 13–16 large particle, 56 platelet, 35, 574 whisker, 581–582

Fracture toughness, 666 additive effects, 669 anisotropy, 90, 96, 103

bridging effects, 52, 109, 642, 667, 672, 681–682

ceramic-metal composites, 510–519 composites, 461–472, 489–516, 624,

641

crack size effects, 47, 491, 496, 626 crack velocity effects, 60, 487, 514,

650, 676 crystallized glasses, 490 electric field effects, 104

eutectic composites, 508–510 fibers, 107

grain size dependence, 71–75, 79–86, 498

microcracking effects, 52, 514, 623–624, 668

particle dependence, 502 platelet composites, 502–505

R-curve effects, 52, 89, 90, 319, 491, 642, 667, 672, 681–682

single crystal, 75–79

693

[Fracture toughness]

single grain-polycrystalline transition, 75–79

temperature dependence, 356–367 tests, 45

versus strength (see tensile strength) wake effects, 52, 87, 90, 91, 109, 514,

681–682

whisker composites, 505–508, 507

Grain

bimodal distribution, 12

boundary phase effects, 276, 361, 440 colonies, 20–21, 26–27, 101 columnar, 18–20

definition, 2 effects, 8, 318

exaggerated, 11–16, 23–24 observation, measurement, 17 orientation, 22, 25, 34, 54, 94–96,

98–102, 192–195 parameters, 4, 10, 28

shape, 22, 31, 94, 312, 403, 675 size

composites, 555, 559, 565, 572 effects, 8

maximum versus average, 35 measurement, 29–32

Hardness

composites, 602, 607–608, 641, 646

composition-grain size effects, 282 crystalline anisotropy, 278–280,

430–432, 674 crystallized glasses, 603

crystal structure effects, 248–249, 264,

electric field effects, 280–281 environmental effects, 280–281,

445–446

grain orientation dependence, 277–281

grain shape dependence, 277–281 grain size dependence, 249–265,

282–283, 304, 562

694

[Hardness]

Hall-Petch dependence, 246–247 indentation cracking, 271–277,

284–286, 446, 674

Knoop versus Vickers, 247–248, 266

minima, 250–270, 284–285 plastic deformation, 245–248, 296 temperature dependence, 430–438

Internal friction, 629–631

Machining

flaws, 298, 568, 684 rates, 338–340

strength anisotropy, 197, 587 stresses, 582

Mean free path (particle spacing), 537, 539

grain size relation, 679 Microcrack, 675

characterization, 50 closure, 69, 403, 643

composites, 493, 500, 502, 503, 552, 555, 567, 570, 623, 627, 648, 675

compressive effects, 311 density, 68

environmental effects, 375 formation in composites, 473 fracture mode, 69, 665

grain size dependence, 65, 66, 68 indent related, 271–277, 284–286 porosity effects, 627

relation to other cracking, 70 strength effects, 671–672, 674 and thermal expansion, 661 and thermal shock, 635

toughness effects, 52, 68, 71–75, 79–86

Nanoscale grains, 7

hardness effects, 255, 283 strength effects, 154, 164, 173,

184–186

Index

[Nanoscale]

impurity effects, 184–186 particles, 7, 500

strength effects, 589

Orientation, 94–102, 192–195, 631, 641,

669

Particle definition, 2

effects, 8, 583, 585 parameters, 4, 10, 28 size

effects, 8, 628, 677 measurement, 29

Plastic deformation, 404, 440, 638, 644, 647–649, 669, 671

anisotropy, 448

boundary phase effects, 408 sapphire, 412–413 twinning

Al2O3 in compression, 313, 405, 413, 445, 447, 452, 673

B4C, 410 Porosity, 660

and microcracking, 627 solidification, 25

Precision elastic limit, 112 Processing

chemical vapor deposition, 687 melt, 687

reaction, 687

Slow crack growth (SCG) additive effects, 92, 108, 669 fracture mode, 57, 59, 665 grain dependence, 57, 61,62, 98

high temperature, 367–371, 622–625, 637

low temperature, 46, 48, 60, 371–376

microcracking, 375 tests, 45

and thermal shock, 635

Index

Tensile strength

compositional effects, 163, 180–186 correlation with Young’s modulus,

213–217, 398–399, 642, 649 fibers, 153, 154, 164

flaw control, 129, 642, 670, 671 grain orientation effects, 192–195 grain shape effects, 189–192 grain size effect, 135–180,

186–189

high temperature, 376–394 large grain effects, 192 microcrack control, 129, 172

microplastic control, 129, 134–143 surface finish effects, 195–206 test effects, 201–204

versus, toughness, 44, 54, 213–223, 412, 493, 501, 504–507, 513–514, 516, 551–552, 559–568, 572–577, 583–588, 627, 641

Thermal conductivity, 658 composite, 663

Thermal expansion anisotropy (TEA) composites, 488

fracture mode effects, 56 hardness effects, 284

695

[Thermal expansion anisotropy (TEA)] strength effects, 130, 211, 312, 403 temperature effects, 448

Thermal stress, shock composites, 625–633, 678 fatigue, 633–635

and microcracking, 635 monolithic ceramics, 355–356,

394–397 and SCG, 635

Wear

composites, 611–613, 680 EA effects, 343

fatigue, 627

grain size dependence, 322–337 high temperature, recrystallization,

447

plastic deformation, 330 TEA effects, 343

Weibull modulus composites, 504, 580–581

compressive failure, 308, 342, 674 fibers, 202

tensile failure, 90, 99, 213, 221–222

Zirconia reduction, 553