Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Kopeykin-Ortopedicheskaya_stomatologia

.pdf
Скачиваний:
598
Добавлен:
09.02.2015
Размер:
28.2 Mб
Скачать

экватором образует большие по площади I и IV квадранты, т. е. при первом варианте ее прохождения. Следует, однако, помнить, что расположение этого типа кламмера со стороны дефекта без дистального ограничения может вызвать наклоняющий момент у опорного зуба.

В т о р о й т и п — эластический опорно-удерживающий кламмер Роуча с Т-образно расщепленными концевыми отделами плеч. Высокие пружинящие свойства его обусловлены значительным удлинением тела и отростка, отходящих от каркаса бюгельного протеза. Оптимальная глубина ретенции 0,5 мм. Этот тип кламмера рекомендуется выбирать при резко диагональном прохождении линии обзора, на опорном зубе (3-й вариант) или при значительном приближении к окклюзионной поверхности (4-й вариант). Т-образное плечо, как правило, располагается в гингивальных квадрантах — III и IV. Возможны варианты, когда часть расщепленного плеча лежит на пересечении линии обзора и располагается в I или II квадрантах, т. е. в обратнодиагональном положении по отношению к резко диагональному расположению линии обзора. Наиболее целесообразным считается использовать этот тип кламмера при дистально неограниченных дефектах (I—

II классы по Кенеди).

 

Т р е т и й тип — кламмер комбинированный,

состоящий

из жесткого плеча кламмера Аккера и эластического

плеча клам-

мера Роуча. Глубина ретенции, расположение плеч в зависимости от прохождения линии обзора соответствуют таковым у рассмотренных ранее типов кламмеров. Комбинированный кламмер рекомендуется применять при дистально неограниченных дефектах; в случаях, когда опорные зубы имеют наклон в сторону языка и линия обзора на поверхностях зуба имеет различные направления и уровень расположения. Жесткое плечо кламмера Аккера располагается с вестибулярной стороны, а эластическое Т-образное — с язычной. Возможно и обратное расположение плеч.

Ч е т в е р т ы й тип — одноплечий кламмер заднего (обратного) действия. По своим конструктивным элементам и применению в зависимости от расположения линии обзора в настоящее время принято этот тип подразделять на две разновидности. Подтип А характеризуется тем, что язычная часть плеча заканчивается медиальной окклюзионной накладкой и переходит в жесткое тело — отросток, соединяющий кламмер с металлическим каркасом съемного протеза. Исходя из этого, язычная часть плеча жесткая и располагается в I—II квадрантах. Дистально-проксималь- ная и вестибулярная части плеча обладают упругими свойствами и располагаются в IV—III квадрантах с вестибулярной стороны. Нередко они могут нести дополнительную окклюзионную накладку со стороны дефекта. Этот подтип кламмера рекомендуется применять при I — II классах дефектов, когда линия обзора проходит по второму варианту, с глубиной ретенции 0,25 мм.

242

Для подтипа Б характерно жесткое тело — отросток с вестибулярной стороны соединяет кламмер с каркасом и находится в

1 —II квадрантах,

окклюзионная накладка располагается со сто-

I роны дефекта, язычная часть плеча упругая и размещается в IV—

' III квадрантах. Показано применение при наклоненных орально

премолярах,

когда линия обзора проходит по пятому варианту.

Глубина ретенции

0,25

мм.

П я т ы й

тип

круговой, или кольцевой. Рекомендуется

для расположения на одиночно стоящих молярах. При вестибулярном наклоне верхних моляров линия обзора проходит по четвертому варианту и ретенционная часть плеча кламмера располагается с вестибулярной стороны в IV — III квадрантах. У мо- , ляров нижней челюсти с язычным наклоном ретенционная часть ; плеча кламмера располагается с язычной стороны в соответству- ! ющих квадрантах. Противоположная часть плеча имеет дополнительную стабилизирующую дугу, придавая жесткость конструкции и устойчивость зубу. Кламмер имеет две окклюзионные накладки — с медиальной и дистальной стороны. Рекомендуемая глубина ретенции 0,5—0,75 мм.

Параллелометрия

В съемном протезе в каждом случае плечи кламмеров (гнутые или литые) должны быть расположены на поверхности зуба соответственно вертикальному и горизонтальному экваторам (линии наибольшей выпуклости). Если число кламмеров больше двух, то выбор стабилизирующих и ретенционных особенностей кламмеров определяется на основе единого, общего для всех поверхностей зубов клинического экватора, что в специальной литературе получило название «путь введения протеза». Для объективизации единого, общего клинического экватора был создан прибор — параллелометр.

Плоскость основания прибора и горизонтальная часть подвижной части стойки параллельны между собой, поэтому любой диагностический стержень, фиксированный отвесно на ней, перпендикулярен основанию параллелометра. Столик для закрепления модели имеет подвижную подставку с фиксирующим устройством, что позволяет придать модели любое положение относительно диагностического металлического стержня и других инструментов. Следовательно, параллелометр — это прибор для определения параллельных между собой и находящихся в одной плоскости точек на бесконечном количестве горизонтальных поверхностей зубов, альвеолярных отростков челюстей при определенном заданном положении модели по отношению к диагностическому стержню (вертикали). Практически значимы пять положений модели по отношению к вертикальному диагностическому стержню (рис. 126):

243

Рис. 126. Положение моделей в параллелометре относительно диагностического стержня.

1) горизонтальное — нулевой наклон: ось диагностического стержня перпендикулярна окклюзионной плоскости жевательных зубов;

2) заднее, когда опущен задний отдел зубного ряда;

3)переднее, когда опущен передний отдел зубного ряда;

4)левое, когда модель наклонена влево;

5)правое, когда модель наклонена вправо.

Влияние наклона зуба на положение экватора на коронке и изменение линии обзора на каждом зубе при наклоне диагностической модели иллюстрирует схема с яйцевидным телом (рис. 127). Изменяя положение модели относительно диагностического стержня, возможно изменять положение экватора, площадь окклюзионной и гингивальной поверхностей, выбранных

244

Рис. 127. Изменение положения линии обзора при изменении положения тела по отношению к диагностическому стержню.

под опору зубов с целью обеспечения необходимой глубины ре- >тенции, разумного, с точки зрения фиксации и эстетики, расположения плеч кламмеров в соответствии с выбранной их конструкцией (последнее продиктовано анализом клинического состояния коронок опорных зубов, пародонта и его рентгенологической оценки, типом прикуса). Заменив диагностический металлический стержень на грифель, очерчивают поверхности зубов в найденном и установленном на столике положении модели. В результате получают линию обзора — графическое изображение лежащих в разных плоскостях точек на всех поверхностях зубов при заданной (определенной) оси введения протеза, что получило название параллелографии. Эта линия обзора есть зона наибольшей выпуклости каждого зуба в единой оси введения протеза. На схеме с яйцевидным телом видно, что эта линия наибольшей выпуклости может не совпадать (что чаще всего и бывает) с анатомическим образованием на коронке зуба — анатомическим экватором.

В зависимости от наклона модели линия обзора будет по-раз- ному располагаться на опорных зубах как со стороны дефекта, так и с вестибулярной и оральной сторон.

. Различают 5 вариантов прохождения линии обзора на поверхности зуба. Первый вариант — со стороны дефекта линия обзора приближается к гингивальной части, а со стороны рядом стоящего медиально зуба — к окклюзионной части зуба. В результате I и IV квадранты имеют большую площадь, чем II и III.

Второй вариант — со стороны дефекта линия обзора приближается к окклюзионной, а со стороны рядом стоящего медиально зуба — к гингивальной части зуба. В результате площадь I квадранта сведена к минимуму либо его практически нет.

Третий вариант — резко диагональное прохождение линии обзора, в результате чего площади I и IV квадрантов становятся минимальными.

245

Четвертый вариант — приближение линии обзора к окклюзионной части по всей протяженности вестибулярной или оральной поверхности зуба. Встречается при наклоне зуба в соответствующую сторону. Практически I и II квадранты отсутствуют.

Пятый вариант — приближение линии обзора к гингивальной части по всей протяженности вестибулярной или оральной поверхности зуба. Встречается при наклоне зуба соответственно в противоположную сторону, при конической форме коронки зуба. Практически III и IV квадранты имеют минимальную площадь или отсутствуют. Перечисленные варианты прохождения линии обзора будут меняться в зависимости от положения модели, т. е. избранной оси введения протеза (см. рис. 126, б). Лишь в пятом варианте при условии, что линия обзора и с вестибулярной, и с оральной стороны проходит близко к десневому краю (при конусной форме коронки), для улучшения условий ретенции необходимо на опорный зуб изготовить искусственную коронку под выбранный тип кламмера. Если добавить, что при параллелометрии определяем зоны поднутрения около зубов и в области альвеолярных отростков, создавая изоляцию во избежание образования «захватов» базисной части протезов с целью беспрепятственного их введения, то становится очевидным, что параллелометрию и параллелографию следует применять практически при лечении всеми конструкциями зубных протезов со множественными разноплановыми элементами фиксации.

Телескопическая система

Эта система фиксации характеризуется наличием двух конструктивных элементов — опорной (несъемной), фиксированной на зубах, и фиксирующей (съемной), располагающейся в съемном зубном протезе, соприкасающиеся поверхности которых точно совпадают по своей форме. За счет высокой точности этих соприкасающихся поверхностей достигаются хорошая фиксация и стабилизация протезов.

Конструкция телескопической коронковой системы включает в себя металлический цилиндрический (штампованный или литой с придесневым уступом) колпачок с достаточно высокими параллельными или слегка (под углом 5°) конусными стенками, фиксированный на опорном зубе, и искусственную коронку (металлическую или комбинированную) анатомической формы, точно повторяющую контуры опорной коронки и соединенную с помощью проволочных стержней с базисом протеза. При изготовлении телескопического якоря (съемная часть телескопа) необходимо предусмотреть сохранение зазора в окклюзионной поверхности 0,2—0,3 мм с учетом податливости слизистой оболочки и возможности погружения базиса протеза. В противном случае опорный зуб может стать точкой концентрации жеватель-

246

Рис. 128. Конструкция телескопической коронки (а) и штанговая конструкция Румпеля (б) и Дольдера (в).

ного давления, что может привести к поломке протеза или возникновению болей периодонтитного характера, появлению патологической подвижности опорных зубов. Применение телескопических коронок, создающих одну степень свободы при фиксации и .стабилизации, считается наиболее показанным при дефектах с одиночно стоящими зубами, сохранившими нормальную высоту.

Другой разновидностью телескопической системы фиксации является штанговая или балочная система. Эта конструкция включает в себя опорную несъемную часть в виде коронок или надкорневых колпачков, между которыми имеется штанга или балка; соответственно в базисе располагается металлическая контрштанга, точно повторяющая форму штанги. Штанга Румпеля — прямоугольная плоская, а штанга Дольдера — каплевидная (рис. 128), за счет чего происходит надежная фиксация и стабилизация протеза через соответствующую контрштангу, имеющую лишь одну степень свободы движения — вертикальную, совпадающую с осью опорных зубов. Применение этой конструкции рекомендуется при таких дефектах, когда между опорными зубами альвеолярный гребень прямолиейный или приближен к этой форме. При дугообразом альвеолярном гребне через штангу на опорных зубах при откусывании или разжевывании пищи возникает рычагообразный наклоняющий момент, отрицательно сказывающийся на состоянии пародонта. Опорные зубы при румпелевской системе должны быть достаточно высокими, позволяю-

247

щими штангу расположить не доходя до слизистой оболочки на 1,5—2 мм.

Если используют штанговую конструкцию Дольдера (см. рис. 128, б), то после выбора опорных зубов проводят их девитализацию, пломбирование каналов и срезают коронковую часть до уровня десневого края с последующим изготовлением штампованных или литых колпачков (возможен вариант со штифтами), соединенных яйцевидной или каплевидной балкой, сужающейся к десневому краю. Эта опорная балка может располагаться между колпачками, находящимися на расстоянии или рядом друг с другом. Контрштанга точно повторяет форму опорной части и, располагаясь в базисе протеза, сохраняет свободными от пластмассы свои концы, которые обладают упругими свойствами. Пройдя через большой диаметр балки, эти концы, какретенционные плечи кламмеров, приходят в исходное состояние, препятствуя вертикальному смещению протеза. Имея сферическую конгруэнтную поверхность, базис под действием жевательного давления и податливости слизистой оболочки совершает вращательное движение вокруг оси балки, не создавая отрицательных боковых нагрузок на пародонт опорных зубов. Система Дольдера показана преимущественно при изготовлении протезов на нижнюю челюсть. Она расширяет показания к сохранению и корней зубов, так как фиксация и стабилизация протезов на нижней челюсти при полном отсутствии зубов остается трудноразрешимой проблемой. И в той, и в другой конструкциях необходимо предусмотреть сохранение зазора 0,2—0,3 мм между штангой и контрштангой в спокойном положении протеза на челюсти с учетом погружения базисов в слизистую оболочку протезного ложа.

Следующей разновидностью телескопической системы является «замковый» вид фиксации протезов (Attachments). Имеется несколько разновидностей замковых конструкций. Всех их объединяет общий принцип: опорная часть соединена на проксимальной поверхности с искусственной коронкой (матричная часть), а удерживающая, съемная, точно повторяет форму внутренней поверхности последней, входит в нее (патрица), имея одну вертикальную степень свободы. Установление замковых фиксаторов даже на двух поверхностях проводится только с помощью параллелометра.

Все разновидности телескопической системы фиксации более эстетичны в сравнении с кламмерной системой и надежны в функциональном отношении. Некоторые сложности клинического характера и технического исполнения сдерживают их широкое применение в клинике лечения частичной адентии съемными протезами.

Любая разновидность кламмерной системы фиксации, телескопические коронки и некоторые разновидности замковых конструкций могут соединяться с базисом-каркасом бюгельного

248

протеза жестко, рессорно и подвижно (лабильное суставное соединение). Выбор того или иного вида соединения основывается на клинических данных, а именно: состояние пародонта опорных зубов, состояние (или вид) антагонистов, состояние слизистой оболочки протезного ложа. Цель одна — при жевательных движениях съемные конструкции зубных протезов должны сводить к минимуму отрицательное воздействие на всю зубочелюстную систему.

Глубокое понимание механизма взаимодействия «съемный зубной протез — ткани протезного ложа» на уровне элементарных понятий теоретической механики и сопротивления материалов и широкого диапазона биологических и медицинских знаний является непременным условием осознанного, всесторонне осмысленного подхода врача-ортопеда к исследованию тканей протезного ложа, выбору правильной конструкции протеза, анализу осложнений, их предупреждению, прогнозу и реабилитации.

Использование учения о «статике» в ортопедической стоматологии необходимо еще и потому, что живые ткани: пародонт, слизистая оболочка и костная ткань челюстей — являются «фундаментом» зубных протезов с различным модулем упругости, разной степенью податливости, подвижности. Так, физиологическая подвижность зубов с нормальным строением пародонта составляет 0,02—0,09 мм, податливость слизистой оболочки протезного ложа очень вариабельна — от 0,3 до 2,5—4,0 мм, т. е. превышает в 10 раз и более аналогичные возможности пародонта. Методами гнатодинамометрии и эстезиометрии доказано, что порог болевой чувствительности слизистой оболочки протезного ложа значительно ниже, чем пародонта.

Пародонт, слизистая оболочка и костная ткань челюстей дают ответную реакцию на воздействие сил жевательного давления. На л основе математических расчетов с поправкой на биологическую ткань можно объяснить кинетику протезов. Исходят из некоторого абстрагирования, что поверхность кости гладкая, а слизистая оболочка имеет одинаковые толщину и строение, а потому и одинаковую податливость в различных отделах. При статических расчетах опираются на модельные опыты, в которых седло съемного протеза представлено в виде длинной балки, располагающейся на эластической подкладке. Массой балки пренебрегают. При этих условиях компрессия слизистой оболочки подчиняется закону Гука, который гласит, что между давлением, напряжением и деформацией существует линейная зависимость. Степень сдавления носит название «реакция ложа».

Если действующая сила приложена к середине балки, то балка будет равномерно погружаться в упругую подкладку. Поперечный разрез через область компрессии образует прямой угол погружения как с медиального, так и с дистального конца, а высота угла соответствует величине погружения.

В случае если сила действует на балку на границе между сред-

249

ней и задней третью, то балка погружается только коротким

дистальным концом и почти вдвое глубже,

чем в первом случае.

Передние 2/3

балки не

будут погружаться,

а следовательно,

не

будут давить

на упругую

подстилку. Зона компрессии имеет

уже

вид треугольника.

 

 

 

Если балку нагружать в области задней трети, то этот конец

балки еще глубже погрузится в подкладку,

а медиальный конец

отстанет от подкладки и переместится в противоположном направлении. Под дистальным концом возникает «зона повышенной компресии». Эпюра (чертеж) становится двузначной (+ и -) и состоит из двух встречных треугольников.

Рассмотрим с этих позиций «работу» съемного пластиночного протеза с удерживающими кламмерами как свободно лежащее тело на упругом основании. При жевательном давлении посередине протяженности искусственного зубного ряда базис должен равномерно погрузиться в слизистую оболочку. Но этого не произойдет, так как податливость слизистой оболочки протезного

ложа неодинаковая:

по срединно-сагиттальному шву она равна

0,1 мм,

по

гребню

альвеолярного отростка — от 0,3

до 0,7—

0,9 мм,

а в

средней и дистальной третях свода твердого

неба —

1,5—2,5 мм и более. Еще в более сложных условиях будет находиться слизистая оболочка при смещении нагрузки на второй моляр, т. е. к дистальному концу балки, вовлекая в процесс на- клонно-вращательного движения зубы, на которых находятся удерживающие кламмеры. Реакция ложа в этом случае принимает форму встречных треугольников с обратными знаками. Важным выводом для клиники из этих теоретических рассуждений является необходимость снятия дифференцированного слепка с тканей протезного ложа с таким расчетом, что, находясь в дальнейшем под базисом протеза, они будут с одинаковой или приближенной степенью податливости.

Наряду с восприятием вертикальных нагрузок во время жевания горизонтальные или под углом к окклюзионной поверхности нагрузки смещают базис по плоскости тканей протезного ложа. На рис. 125 представлена схема взаимодействия плеча и тела кламмера, базиса протеза и зубов при горизонтальном смещении базиса. Плотное прилегание жесткого пластмассового базиса к зубам с язычной стороны оказывает давление почти под прямым углом к оси этих зубов. При смене сторон жевания давление имеет толчкообразный характер с переменным знаком (+ и

— ) . В дополнение к этому, если плечо кламмера не обладает упругими свойствами, то при смещении базиса, например вправо, удерживающие протез зубы слева через кламмер испытывают тягу под углом к оси. В результате этих отрицательных нагрузок пародонт опорных зубов, к которым прилегает жесткий пластиночный базис, разрушается. Вот почему необходимо считать обоснованными рекомендации отказаться от конструкции одноплечего удерживающего гнутого кламмера, а перейти в этих видах про-

250

хезов к двуплечим кламмерам с исключением прилегания жесткого базиса к зубам. Переход от пластиночного типа протеза к бюгельному позволяет решить и вторую проблему — исключить прилегание базиса протеза к естественным зубам.

Рассматривая статику бюгельного протеза, нельзя ограничиться приведенными теоретическими рассуждениями, так как в этих

конструкциях

зубных протезов обязательно присутствует наряду

с удерживающим опорный элемент.

Первыми,

кто осуществил попытку теоретического осмысле-

ния проблемы взаимодействия бюгельного протеза с пародонтом опорных зубов и слизистой оболочкой протезного ложа, были Румпель и Канторович. В дальнейшем работами отечественных ученых (С. Д. Шварц, Г. П. Соснин), а также немецких ученых Беттгера, Хойпля, Кирштена, Хроматки, Тиринга и др. эти идеи были развиты и скорректированы.

Модель Румпеля при одностороннем дистально неограниченном дефекте рассматривается как балка, жестко защемленная на одном конце и располагающаяся на упругом основании в виде спиралевидных пружин (см. рис. 125, а), представляя в таком виде своеобразную консоль. При нагрузке на балку (базис протеза) ее свободный конец перемещается вниз, сжимая дистально расположенные участки слизистой оболочки. В опорной точке (пародонт зуба) возникает наклонно-вращательный момент, а участки слизистой оболочки, расположенные ближе к опоре, не «работают». Следовательно, «концевой» базис при жестком соединении с опорно-удерживающим кламмером и расположением окклюзионной накладки со стороны дефекта «работает» как консоль, создавая наибольшую нагрузку слизистой оболочки и костной ткани альвеолярного отростка в дистальном отделе с возникновением в пародонте опорного зуба наклонно-вращательно- го, вывихивающего момента, приводящего к патологической подвижности последнего.

Модель Канторовича представляет собой двусторонне жестко ущемленную П-образную (аркообразную) балку со свободными концами, покоящимися на упругом основании.

Статическое положение бюгельного протеза при двусторонних неограниченных дефектах можно сравнить на примере двусторонне жестко связанной балки со свободными концами, покоящимися на податливом основании.

П-образно изогнутая дуга уложена своей серединой (соединительная часть) на твердом основании, а ее дуга жестко прикреплена с обеих сторон, сохраняя подвижность балки вокруг горизонтальной оси (вращение). Давление, приложенное к одному свободному концу, вызывает погружение обоих концов в упругую подкладку, что понятно, ибо они представляют жесткую систему. При ослаблении одной из опор балка в этом месте приподнимается и другой свободный конец балки не испытвает давления, балка в этом участке не погружается в подкладку. Учас-

251