Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Применение углеродных нанотрубок в биомедицине 2 / Negri, V., Pacheco-Torres, J., Calle, D., & López-Larrubia, P. (2020). Carbon Nanotubes in Biomedicine. Topics in Current Chemistry, 378(1). doi10.1007s41061-019-0278-8.pdf
Скачиваний:
20
Добавлен:
01.03.2023
Размер:
2.6 Mб
Скачать

\ 15  

Page 28 of 41

Topics in Current Chemistry

(2020) 378:15

 

 

 

 

leading to the formation of engineered cardiac tissues with stronger contraction capacity. The in vitro studies suggested that hybrid SWCNT/collagen hydrogels can be promising tissue sca olds for cardiac regeneration after myocardial arrest. In a similar line, a recent study described a biohybrid hydrogel prepared from hydrazidefunctionalized CNTs and solubilized pericardial matrix. This hydrogel is a suitable environment for maturation of human-induced pluripotent stem cell-derived cardiomyocytes, constituting a promising material for stem cell-based cardiac tissue engineering [209].

4.4.3  CNTs and Stem Cells

Stem cells (SC) have attracted the attention of researchers around the world during the last decade due to their ability to self-renew and di erentiate, depicting multiple potential applications for tissue engineering and regenerative medicine. CNTs presented excellent properties as culture substrate [210], having the ability to dynamically direct the SC lineage, modulating proliferation and di erentiation of various types of SC. Di erent studies have reported the improvements achieved by growing SC in CNT-based nanocomposites. These materials were able to promote di erentiation of mouse neural SC to neurons and oligodendrocytes [211], neural di erentiation of human embryonic stem cells [212], and di erentiation of human mesenchymal stem cells [213], among others.

4.5 Other Applications

The versatility of carbon nanotubes in biomedicine and preclinical setup is very large, with many studies reporting the use of CNTs to solve the problem under investigation. Carbon nanotubes are being used, for example, to construct brain electrodes [214], or as biosensors for bone cells [215] or the infuenza virus [112]. By linking CNTs to antigenic peptides, they could improve the major hurdles associated with vaccine delivery [216]. In fact, they can act as excellent vaccine carrier systems having a great potential to stimulate the innate immune response. Also, the combination of CNTs with antibiotics could help to overcome the growing problem of antibiotics resistance [190]. When properly functionalized, CNTs can also be used in antiviral drug delivery [217].

5 Conclusions

Bionanotechnology is a new promising tool for improving the management of numerous pathologies. A wide range of nanomaterials have been prepared, characterized, and evaluated for numerous biomedical applications to solve specific problems not achievable with classical approaches. Among them, carbon nanotubes present unique features and physical, chemical, and biological properties. These intrinsic attributes can be notably improved though coating, surface functionalization, and decoration with di erent molecules, ligands, or nanostructures. All of

1 3

Topics in Current Chemistry

(2020) 378:15 \

Page 29 of 41  15

 

 

 

these turn CNTs into ideal platforms with diagnostic, therapeutic, and theranostic possibilities not accessible for other nanoparticles and with promising preclinical and clinical applications.

In this review, the biomedical applications of CNTs have been addressed in different fields of drug and/or gene delivery, bioimaging, and tissue engineering. The special electronic and mechanical qualities of nanotubes make them suitable for theranostic applications as providing an exceptional platform for combining disease detection and treatment capacity at the same time. These structures can be used in diagnosis as e cient biosensors or contrast agent for non-invasive imaging, and at the same time, increase the lifetime of drugs in organism and facilitate their direct delivery within cells of a target-specific tissue. Also, nanotubes have reached a vital relevance in biotechnology, being an excellent sca old on their own or taking the part of hybrid materials for regenerative medicine. They have proved to be useful in cell growth and proliferation, enabling the engineering of di erent tissues. The studies included in this review have highlighted the potential of CNTs and justified all the e orts in optimizing their use as an alternative therapy for complicated medical conditions with no current treatments.

Nevertheless, despite the numerous and intensive studies, some important inconveniences, which preclude potential clinical applications, need to be overcome, with toxicity probably being the most important handicap. The triad of CNTs functionalization, type, size, and purity have been identified as leading causes determining the utility of nanotube-based complex in vivo. Collating reliable cellular and animal data with respect to molecularly well-defined architectures provides a basis for further breakthroughs on the horizon.

Acknowledgements  This study was funded by grants from the Ministry of Economy, Industry and Competitivity (SAF2017-83043-R), and by the Program MULTITARGET&VIEW-CM from Community of Madrid, Spain (S2017/BMD-3688), involving contributions from FEDER and FSE funds.

Authors Contributions  Pilar López-Larrubia had the idea for the article. Viviana Negri, Jesús PachecoTorres, Daniel Calle, and Pilar Lopez-Larrubia performed the literature search and data analysis, drafted and critically revised the work.

Compliance with Ethical Standards 

Confict of interest  The authors declare that they have no conficts of interest.

References

\1.\ Ahsan MA, Jabbari V, Islam MT, Turley RS, Dominguez N, Kim H, Castro E, Hernandez-Viez- cas JA, Curry ML, Lopez J, Gardea-Torresdey JL, Noveron JC (2019) Sustainable synthesis and remarkable adsorption capacity of MOF/graphene oxide and MOF/CNT based hybrid nanocomposites for the removal of Bisphenol A from water. Sci Total Environ 673:306–317. https://doi. org/10.1016/j.scitotenv.2019.03.219

\2.\ Ahsan MA, Jabbari V, Imam MA, Castro E, Kim H, Curry ML, Valles-Rosales DJ, Noveron JC (2020) Nanoscale nickel metal organic framework decorated over graphene oxide and carbon

1 3

\ 15  

Page 30 of 41

Topics in Current Chemistry

(2020) 378:15

 

 

 

 

nanotubes for water remediation. Sci Total Environ 698:134214. https://doi.org/10.1016/j.scito tenv.2019.134214

\3.\ Cova CM, Zuliani A, Santiago ARP, Caballero A, Muñoz-Batista MJ, Luque R (2018) Microwave-

assisted preparation of Ag/Ag2S carbon hybrid structures from pig bristles as e cient HER catalysts. J Mater Chem A 6:21516–21523

\4.\ Franco A, Cebrián-García S, Rodríguez-Padrón D, Puente-Santiago AR, Muñoz-Batista MJ, Caballero A, Balu AM, Romero AA, Luque R (2018) Encapsulated laccases as e ective electrocatalysts for oxygen reduction reactions. ACS Sustain Chem Eng 6:11058–11062

\5.\ Ahsan MA, Jabbari V, El-Gendy AA, Curry ML, Noveron JC (2019) Ultrafast catalytic reduction of environmental pollutants in water via MOF-derived magnetic Ni and Cu nanoparticles encapsulated in porous carbon. Appl Surf Sci 597:142608

\6.\ Ahsan MA, Deemer E, Fernandez-Delgado O, Wang H, Curry ML, El-Gendy AA, Noveron JC (2019) Fe nanoparticles encapsulated in MOF-derived carbon for the reduction of 4-nitrophenol and methyl orange in water. Catal Commun 130:105753

\7.\ Ahsan MA, Fernandez-Delgado O, Deemer E, Wang H, El-Gendy AA, Curry ML, Noveron JC (2019) Carbonization of Co-BDC MOF results in magnetic C@Co nanoparticles that catalyze the reduction of methyl orange and 4-nitrophenol in water. J Mol Liq 290:111059

\8.\ Ostovar S, Franco A, Puente-Santiago AR, Pinilla-de Dios M, Rodriguez-Padron D, Shaterian HR, Luque R (2018) E cient mechanochemical bifunctional nanocatalysts for the conversion of isoeugenol to vanillin. Front Chem 6:77. https://doi.org/10.3389/fchem.2018.00077

\9.\ Rodríguez-Padrón D, Puente-Santiago AR, Balu AM, Muñoz-Batista MJ, Luque R (2019) Environmental catalysis: present and future. ChemCatChem 11:18–38

\10.\ Pacheco-Torgal F, Diamanti MV, Nazari A, Goran-Granqvist C, Pruna A, Amirkhanian SE (2018) Nanotechnology in eco-e cient construction: materials, processes and applications. Woodhead Publishing, Sawston

\11.\ Sanad MF, Shalan AE, Bazid SM, Serea ESA, Hashem EM, Nabih S, Ahsan MA (2019) A graphene gold nanocomposite-based 5-FU drug and the enhancement of the MCF-7 cell line treatment. RSC Adv 9:31021–31029

\12.\ Chen S, Li R, Li X, Xie J (2018) Electrospinning: an enabling nanotechnology platform for drug delivery and regenerative medicine. Adv Drug Deliv Rev 132:188–213. https://doi.org/10.1016/j. addr.2018.05.001

\13.\ Yang Y, Chawla A, Zhang J, Esa A, Jang HL, Khademhosseini A (2019) Applications of nanotechnology for regenerative medicine; healing tissues at the nanoscale. Principles of Regenerative Medicine, pp 485–504

\14.\ Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

\15.\ Simon J, Flahaut E, Golzio M (2019) Overview of carbon nanotubes for biomedical applications. Materials (Basel). https://doi.org/10.3390/ma12040624

\16.\ Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, Abasi M, Hanifehpour Y, Joo SW (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9(1):393. https://doi.org/10.1186/1556-276x-9-393

\17.\ Galano A (2010) Carbon nanotubes: promising agents against free radicals. Nanoscale 2(3):373–380

\18.\ Lu JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79(7):1297–1300

\19.\ Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678–680

\20.\ Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334):1971–1975

\21.\ Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 79(8):1172–1174

\22.\ White CT, Todorov TN (1998) Carbon nanotubes as long ballistic conductors. Nature 393(6682):240–242

\23.\ Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382(6586):54–56

\24.\ Hills G, Lau C, Wright A, Fuller S, Bishop MD, Srimani T, Kanhaiya P, Ho R, Amer A, Stein Y, Murphy D, Arvind Chandrakasan A, Shulaker MM (2019) Modern microprocessor built from complementary carbon nanotube transistors. Nature 572(7771):595–602. https://doi.org/10.1038/ s41586-019-1493-8

1 3

Topics in Current Chemistry

(2020) 378:15 \

Page 31 of 41  15

 

 

 

\25.\ Wan X, Dong J, Xing DY (1998) Optical properties of carbon nanotubes. Phys Rev B 58:4. https:// doi.org/10.1103/PhysRevB.58.6756

\26.\ Hone JL, Biercuk MJ, Johnson AT, Batlogg B, Benes Z, Fisher JE (2002) Thermal properties of carbon nanotubes and nanotube-based materials. Appl Phys A 74:5. https://doi.org/10.1007/s0033 90201277

\27.\ Ardavan A, Austwick M, Benjamin SC, Briggs GAD, Dennis TJS, Ferguson A, Hasko DG, Kanai M, Khlobystov AN, Lovett BW, Morley GW, Oliver RA, Pettifor DG, Porfyrakis K, Reina JH, Rice JH, Smith JD, Taylor RA, Williams DA, Adelmann C, Mariette H, Hamers RJ (2003) Nanoscale solid-state quantum computing. Philos Trans R Soc A 361(1808):1473–1485. https:// doi.org/10.1098/rsta.2003.1214

\28.\ Monthioux M, Flahaut E (2007) Metaand hybrid-CNTs: a clue for the future development of carbon nanotubes. Mater Sci Eng C 27(5):1096–1101. https://doi.org/10.1016/j.msec.2006.07.032

\29.\ Chae S, Kim D, Lee K-j, Lee D, Kim Y-O, Jung YC, Rhee SD, Kim KR, Lee J-O, Ahn S, Koh B (2018) Encapsulation and enhanced delivery of topoisomerase I inhibitors in functionalized carbon nanotubes. ACS Omega 3(6):5938–5945. https://doi.org/10.1021/acsomega.8b00399

\30.\ Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106(3):1105–1136

\31.\ Joseph S, Mashl RJ, Jakobsson E, Aluru NR (2003) Electrolytic transport in modified carbon nanotubes. Nano Lett 3(10):1399–1403. https://doi.org/10.1021/nl0346326

\32.\ Pan X, Bao X (2011) The e ects of confinement inside carbon nanotubes on catalysis. Acc Chem Res 44(8):553–562. https://doi.org/10.1021/ar100160t

\33.\ Mirabootalebi SO, Akbari G (2017) Methods for synthesis of carbon nanotubes—review

\34.\ Kim SWKT, Kim YS, Choi HS, Lim HJ, Yang SJ, Park CR (2012) Surface modifications for the e ective dispersion of carbon nanotubes in solvents and polymers. Carbon 50:3–33

\35.\ Wu HC, Chang X, Liu L, Zhao Y (2010) Chemistry of carbon nanotubes in biomedical applications. J Mater Chem A 20:1036–1052

\36.\ Britz DA, Khlobystov AN (2006) Noncovalent interactions of molecules with single-walled carbon nanotubes. Chem Soc Rev 35(7):637–659. https://doi.org/10.1039/b507451g

\37.\ Ajayan PM, Iijima S (1993) Capillarity-induced filling of carbon nanotubes. Nature 361(6410):333–334. https://doi.org/10.1038/361333a0

\38.\ Dujardin E, Ebbesen TW, Hiura H, Tanigaki K (1994) Capillarity and wetting of carbon nanotubes. Science 265(5180):1850–1852. https://doi.org/10.1126/science.265.5180.1850

\39.\ Campo J, Piao Y, Lam S, Sta ord CM, Streit JK, Simpson JR, Hight Walker AR, Fagan JA (2016) Enhancing single-wall carbon nanotube properties through controlled endohedral filling. Nanoscale Horizons 1(4):317–324. https://doi.org/10.1039/C6NH00062B

\40.\ Li J, Yap SQ, Chin CF, Tian Q, Yoong SL, Pastorin G, Ang WH (2012) Platinum(iv) prodrugs entrapped within multiwalled carbon nanotubes: selective release by chemical reduction and hydrophobicity reversal. Chem Sci 3(6):2083–2087. https://doi.org/10.1039/C2SC01086K

\41.\ Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110(9):5366–5397. https://doi.org/10.1021/cr100018g

\42.\ Jeon IY, Chang DW, Kumar NA, Baek JB (2011) Functionalization of carbon nanotubes. Carbon Nanotubes Polymer Nanocomposites. https://doi.org/10.5772/979

\43.\ Jha N, Ramesh P, Bekyarova E, Tian XJ, Wang FH, Itkis ME, Haddon RC (2013) Functionalized single-walled carbon nanotube-based fuel cell benchmarked against US DOE 2017 Technical Targets. Sci Rep-Uk. https://doi.org/10.1038/srep02257

\44.\ Dyke CA, Tour JM (2004) Covalent functionalization of single-walled carbon nanotubes for materials applications. J Phys Chem A 108(51):11151–11159. https://doi.org/10.1021/jp046274g

\45.\ Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41(11):1853–1859

\46.\ Singh P, Campidelli S, Giordani S, Bonifazi D, Bianco A, Prato M (2009) Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem Soc Rev 38(8):2214–2230. https://doi.org/10.1039/b518111a

\47.\ Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A (2016) Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J Med Chem 59(18):8149– 8167. https://doi.org/10.1021/acs.jmedchem.5b01770

\48.\ Hamwi A, Alvergnat H, Bonnamy S, Beguin F (1997) Fluorination of carbon nanotubes. Carbon 35(6):723–728

1 3

\ 15  

Page 32 of 41

Topics in Current Chemistry

(2020) 378:15

 

 

 

 

\49.\ Mickelson ET, Hu man CB, Rinzler AG, Smalley RE, Hauge RH, Margrave JL (1998) Fluorination of single-wall carbon nanotubes. Chem Phys Lett 296(1–2):188–194. https://doi.org/10.1016/ s0009-2614(98)01026-4

\50.\ Kelly KF, Chiang IW, Mickelson ET, Hauge RH, Margrave JL, Wang X, Scuseria GE, Radlo C, Halas NJ (1999) Insight into the mechanism of sidewall functionalization of single-walled nanotubes: an STM study. Chem Phys Lett 313(3–4):445–450. https://doi.org/10.1016/S0009 -2614(99)00973-2

\51.\ Touhara H, Inahara J, Mizuno T, Yokoyama Y, Okanao S, Yanagiuch K, Mukopadhyay I, Kawasaki S, Okino F, Shirai H, Xu WH, Kyotani T, Tomita A (2002) Property control of new forms of carbon materials by fuorination. J Fluorine Chem 114(2):181–188. https://doi.org/10.1016/s0022 -1139(02)00026-x

\52.\ Stevens JL, Huang AY, Peng H, Chiang IW, Khabashesku VN, Margrave JL (2003) Sidewall amino-functionalization of single-walled carbon nanotubes through fuorination and subsequent reactions with terminal diamines. Nano Lett 3(3):331–336. https://doi.org/10.1021/nl025944w

\53.\ Zhang L, Kiny VU, Peng H, Zhu J, Lobo RFM, Margrave JL, Khabashesku VN (2004) Sidewall functionalization of single-walled carbon nanotubes with hydroxyl group-terminated moieties. Chem Mater 16(11):2055–2061. https://doi.org/10.1021/cm035349a

\54.\ Boul PJ, Liu J, Mickelson ET, Hu man CB, Ericson LM, Chiang IW, Smith KA, Colbert DT, Hauge RH, Margrave JL, Smalley RE (1999) Reversible sidewall functionalization of buckytubes. Chem Phys Lett 310(3–4):367–372

\55.\ Saini RK, Chiang IW, Peng HQ, Smalley RE, Billups WE, Hauge RH, Margrave JL (2003) Covalent sidewall functionalization of single-wall carbon nanotubes. J Am Chem Soc 125(12):3617–3621

\56.\ Unger E, Graham A, Kreupl F, Liebau M, Hoenlein W (2002) Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification. Curr Appl Phys 2(2):107–111

\57.\ Amirian M, Nabipour Chakoli A, Sui JH, Cai W (2012) Enhanced mechanical and photoluminescence e ect of poly(l-lactide) reinforced with functionalized multiwalled carbon nanotubes. Polym Bull 68(6):1747–1763. https://doi.org/10.1007/s00289-012-0700-7

\58.\ Chakoli AN, He JM, Huang YD (2018) Collagen/aminated MWCNTs nanocomposites for biomedical applications. Mater Today Commun 15:128–133. https://doi.org/10.1016/j.mtcom m.2018.03.003

\59.\ Graupner R, Abraham J, Wunderlich D, Vencelová A, Lau er P, Röhrl J, Hundhausen M, Ley L, Hirsch A (2006) Nucleophilic–alkylation–reoxidation: a functionalization sequence for single-wall carbon nanotubes. J Am Chem Soc 128(20):6683–6689. https://doi.org/10.1021/ja0607281

\60.\ Dyke CA, Stewart MP, Maya F, Tour JM (2004) Diazonium-based functionalization of carbon nanotubes: XPS and GC–MS analysis and mechanistic implications. Synlett 1:155–160. https://doi. org/10.1055/s-2003-44983​

\61.\ Bahr JL, Yang J, Kosynkin DV, Bronikowski MJ, Smalley RE, Tour JM (2001) Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J Am Chem Soc 123(27):6536–6542. https://doi.org/10.1021/ja010462s

\62.\ Strano MS, Dyke CA, Usrey ML, Barone PW, Allen MJ, Shan H, Kittrell C, Hauge RH, Tour JM, Smalley RE (2003) Electronic structure control of single-walled carbon nanotube functionalization. Science 301(5639):1519–1522. https://doi.org/10.1126/science.1087691

\63.\ Dyke CA, Tour JM (2003) Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Lett 3(9):1215–1218. https://doi.org/10.1021/nl034537x

\64.\ Leventis HC, Wildgoose GG, Davies IG, Jiang L, Jones TG, Compton RG (2005) Multiwalled carbon nanotubes covalently modified with fast black K. ChemPhysChem 6(4):590–595. https://doi. org/10.1002/cphc.200400536

\65.\ Bahr JL, Tour JM (2001) Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem Mater 13(11):3823–3824. https://doi.org/10.1021/cm0109903

\66.\ Mitchell CA, Bahr JL, Arepalli S, Tour JM, Krishnamoorti R (2002) Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35(23):8825–8830. https://doi.org/10.1021/ ma020890y

\67.\ Hudson JL, Casavant MJ, Tour JM (2004) Water-soluble, exfoliated, nonroping single-wall carbon nanotubes. J Am Chem Soc 126(36):11158–11159. https://doi.org/10.1021/ja0467061

\68.\ Dyke CA, Tour JM (2003) Solvent-free functionalization of carbon nanotubes. J Am Chem Soc 125(5):1156–1157. https://doi.org/10.1021/ja0289806

1 3

Topics in Current Chemistry

(2020) 378:15 \

Page 33 of 41  15

 

 

 

\69.\ Kooi SE, Schlecht U, Burghard M, Kern K (2002) Electrochemical modification of single carbon nanotubes. Angew Chem Int Ed Engl 41(8):1353–1355

\70.\ Balasubramanian K, Sordan R, Burghard M, Kern K (2004) A selective electrochemical approach to carbon nanotube field-e ect transistors. Nano Lett 4(5):827–830. https://doi.org/10.1021/nl049 806d

\71.\ Delgado JL, de la Cruz P, Langa F, Urbina A, Casado J, Navarrete JTL (2004) Microwave-assisted sidewall functionalization of single-wall carbon nanotubes by Diels–Alder cycloaddition. Chem Commun 15:1734–1735

\72.\ Araújo RF, Proença MF, Silva CJ, Castro TG, Melle-Franco M, Paiva MC, Villar-Rodil S, Tascón JMD (2016) Grafting of adipic anhydride to carbon nanotubes through a Diels–Alder cycloaddition/oxidation cascade reaction. Carbon 98:421–431. https://doi.org/10.1016/j.carbon.2015.11.004

\73.\ Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic functionalization of carbon nanotubes. J Am Chem Soc 124(5):760–761. https://doi.org/10.1021/ja016 954m

\74.\ Georgakilas V, Tagmatarchis N, Pantarotto D, Bianco A, Briand JP, Prato M (2002) Amino acid functionalisation of water soluble carbon nanotubes. Chem Commun 24:3050–3051. https://doi. org/10.1039/b209843a

\75.\ Lu X, Tian F, Xu X, Wang NQ, Zhang Q (2003) Theoretical exploration of the 1,3-dipolar cycloadditions onto the sidewalls of (n, n) armchair single-wall carbon nanotubes. J Am Chem Soc 125(34):10459–10464. https://doi.org/10.1021/ja034662a

\76.\ Yao ZL, Braidy N, Botton GA, Adronov A (2003) Polymerization from the surface of singlewalled carbon nanotubes—preparation and characterization of nanocomposites. J Am Chem Soc 125(51):16015–16024. https://doi.org/10.1021/ja037564y

\77.\ Calcio Gaudino E, Tagliapietra S, Martina K, Barge A, Lolli M, Terreno E, Lembo D, Cravotto G (2014) A novel SWCNT platform bearing DOTA and β-cyclodextrin units. “One shot” multidecoration under microwave irradiation. Org Biomol Chem 12(26):4708–4715. https://doi.org/10.1039/ c4ob00611a

\78.\ Tobias G, Mendoza E, Ballesteros B (2012) Functionalization of Carbon Nanotubes. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer Netherlands, Dordrecht, pp 911–919. https://doi. org/10.1007/978-90-481-9751-4_48

\79.\ Zhang ZY, Xu XC (2015) Nondestructive covalent functionalization of carbon nanotubes by

selective oxidation of the original defects with K­2FeO4. Appl Surf Sci 346:520–527. https://doi. org/10.1016/j.apsusc.2015.04.026

\80.\ Gonzalez-Guerrero AB, Mendoza E, Pellicer E, Alsina F, Fernandez-Sanchez C, Lechuga LM (2008) Discriminating the carboxylic groups from the total acidic sites in oxidized multi-wall carbon nanotubes by means of acid-base titration. Chem Phys Lett 462(4–6):256–259. https://doi. org/10.1016/j.cplett.2008.07.071

\81.\ Riggs JE, Guo ZX, Carroll DL, Sun YP (2000) Strong luminescence of solubilized carbon nanotubes. J Am Chem Soc 122(24):5879–5880

\82.\ Sun YP, Huang WJ, Lin Y, Fu KF, Kitaygorodskiy A, Riddle LA, Yu YJ, Carroll DL (2001) Soluble dendron-functionalized carbon nanotubes: preparation, characterization, and properties. Chem Mater 13(9):2864–2869

\83.\ Chen J, Hamon MA, Hu H, Chen YS, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282(5386):95–98

\84.\ Chen J, Rao AM, Lyuksyutov S, Itkis ME, Hamon MA, Hu H, Cohn RW, Eklund PC, Colbert DT, Smalley RE, Haddon RC (2001) Dissolution of full-length single-walled carbon nanotubes. J Phys Chem B 105(13):2525–2528

\85.\ Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Hu man CB (1998) Fullerene pipes. Science 280(5367):1253–1256

\86.\ Bourlinos AB, Georgakilas V, Tzitzios V, Boukos N, Herrera R, Giannelis ER (2006) Functionalized carbon nanotubes: synthesis of meltable and amphiphilic derivatives. Small 2(10):1188–1191

\87.\ Samori C, Sainz R, Menard-Moyon C, Toma FM, Venturelli E, Singh P, Ballestri M, Prato M, Bianco A (2010) Potentiometric titration as a straightforward method to assess the number of functional groups on shortened carbon nanotubes. Carbon 48(9):2447–2454

\88.\ Calle D, Negri V, Munuera C, Mateos L, Touriño IL, Viñegla PR, Ramírez MO, García-Hernán- dez M, Cerdán S, Ballesteros P (2018) Magnetic anisotropy of functionalized multi-walled carbon nanotube suspensions. Carbon 131:229–237. https://doi.org/10.1016/j.carbon.2018.01.104

1 3

\ 15  

Page 34 of 41

Topics in Current Chemistry

(2020) 378:15

 

 

 

 

\89.\ Isaac KM, Sabaraya IV, Ghousifam N, Das D, Pekkanen AM, Romanovicz DK, Long TE, Saleh NB, Rylander MN (2018) Functionalization of single-walled carbon nanohorns for simultaneous fuorescence imaging and cisplatin delivery in vitro. Carbon 138:309–318. https://doi. org/10.1016/j.carbon.2018.06.020

\90.\ Chen RJ, Zhang YG, Wang DW, Dai HJ (2001) Noncovalent sidewall functionalization of singlewalled carbon nanotubes for protein immobilization. J Am Chem Soc 123(16):3838–3839

\91.\ Barry NPE, Therrien B (2016) Pyrene: the guest of honor, chapter 13. In: Sadjadi S (ed) Organic nanoreactors. Academic Press, Boston, pp 421–461. https://doi.org/10.1016/B978-0-12-80171 3-5.00013-6

\92.\ Bilalis P, Katsigiannopoulos D, Avgeropoulos A, Sakellariou G (2014) Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv 4(6):2911–2934. https://doi.org/10.1039/ c3ra44906h

\93.\ Zhu J, Yudasaka M, Zhang MF, Kasuya D, Iijima S (2003) Surface modification approach to the patterned assembly of single-walled carbon nanomaterials. Nano Lett 3(9):1239–1243

\94.\ Zhang T, Ge Y, Wang X, Chen J, Huang X, Liao Y (2017) Polymeric ruthenium porphyrin-func- tionalized carbon nanotubes and graphene for levulinic ester transformations into γ-valerolactone and pyrrolidone derivatives. ACS Omega 2(7):3228–3240. https://doi.org/10.1021/acsom ega.7b00427

\95.\ Li H, Zhou B, Lin Y, Gu L, Wang W, Fernando KAS, Kumar S, Allard LF, Sun Y-P (2004) Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. J Am Chem Soc 126(4):1014–1015. https://doi.org/10.1021/ja037142o

\96.\ Hu CY, Xu YJ, Duo SW, Zhang RF, Li MS (2009) Non-covalent functionalization of carbon nanotubes with surfactants and polymers. J Chin Chem Soc-Taip 56(2):234–239. https://doi. org/10.1002/jccs.200900033

\97.\ Vardharajula S, Ali SZ, Tiwari PM, Eroğlu E, Vig K, Dennis VA, Singh SR (2012) Functionalized carbon nanotubes: biomedical applications. Int J Nanomed 7:5361–5374. https://doi.org/10.2147/ IJN.S35832

\98.\ Zhang LW, Zeng L, Barron AR, Monteiro-Riviere NA (2007) Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Int J Toxicol 26(2):103–113. https://doi.org/10.1080/10915810701225133

\99.\ Sadegh H, Shahryari-ghoshekandi R (2015) Functionalization of carbon nanotubes and its application in nanomedicine: a review. Nanomed J 2(4):231–248. https://doi.org/10.7508/nmj.2015.04.001

\100.\ Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128:37–46. https://doi.org/10.1016/j.cis.2006.11.007

\101.\ Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, Talmon Y (2003) Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett 3(10):1379–1382. https://doi.org/10.1021/nl034524j

\102.\ Niezabitowska E, Smith J, Prestly MR, Akhtar R, von Aulock Felix W, Lavallée Y, Ali-Boucetta H, McDonald TO (2018) Facile production of nanocomposites of carbon nanotubes and polycaprolactone with high aspect ratios with potential applications in drug delivery. RSC Adv 8(30):16444– 16454. https://doi.org/10.1039/C7RA13553J

\103.\ Negri V, Cerpa A, Lopez-Larrubia P, Nieto-Charques L, Cerdan S, Ballesteros P (2010) Nanotubular paramagnetic probes as contrast agents for magnetic resonance imaging based on the di usion tensor. Angew Chem Int Ed 49(10):1813–1815

\104.\ Cerpa A, Kober M, Calle D, Negri V, Gavira JM, Hernanz A, Briones F, Cerdan S, Ballesteros P (2013) Single-walled carbon nanotubes as anisotropic relaxation probes for magnetic resonance imaging. Medchemcomm 4(4):669–672

\105.\ Bharti A, Cheruvally G (2018) Surfactant assisted synthesis of Pt-Pd/MWCNT and evaluation as cathode catalyst for proton exchange membrane fuel cell. Int J Hydrogen Energy 43(31):14729– 14741. https://doi.org/10.1016/j.ijhydene.2018.06.009

\106.\ Yasujima R, Yasueda K, Horiba T, Komaba S (2018) Multi-enzyme immobilized anodes utilizing maltose fuel for biofuel cell applications. ChemElectroChem 5(16):2271–2278. https://doi. org/10.1002/celc.201800370

\107.\ Martínez-Paz P, Negri V, Esteban-Arranz A, Martínez-Guitarte JL, Ballesteros P, Morales M (2019) E ects at molecular level of multi-walled carbon nanotubes (MWCNT) in Chironomus riparius (DIPTERA) aquatic larvae. Aquat Toxicol 209:42–48. https://doi.org/10.1016/j.aquat ox.2019.01.017

1 3

Topics in Current Chemistry

(2020) 378:15 \

Page 35 of 41  15

 

 

 

\108.\ Ge C, Du J, Zhao L, Wang L, Liu Y, Li D, Yang Y, Zhou R, Zhao Y, Chai Z, Chen C (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci 108(41):16968– 16973. https://doi.org/10.1073/pnas.1105270108

\109.\ Zhao X, Liu R, Chi Z, Teng Y, Qin P (2010) New insights into the behavior of bovine serum albumin adsorbed onto carbon nanotubes: comprehensive spectroscopic studies. J Phys Chem B 114(16):5625–5631. https://doi.org/10.1021/jp100903x

\110.\ Yi CQ, Qi SJ, Zhang DW, Yang MS (2010) Covalent conjugation of multi-walled carbon nanotubes with proteins. Methods Mol Biol 625:9–17. https://doi.org/10.1007/978-1-60761-579-8_2

\111.\ Niu S-Y, Li Q-Y, Ren R, Hu K-C (2010) DNA/single-walled carbon nanotubes based fuorescence detection of Hg­ 2+. Anal Lett 43(15):2432–2439. https://doi.org/10.1080/00032711003717455

\112.\ Tran TL, Nguyen TT, Huyen Tran TT, Chu VT, Thinh Tran Q, Tuan Mai A (2017) Detection of infuenza A virus using carbon nanotubes field e ect transistor based DNA sensor. Phys E 93:83– 86. https://doi.org/10.1016/j.physe.2017.05.019

\113.\ Wu Y, Hudson JS, Lu Q, Moore JM, Mount AS, Rao AM, Alexov E, Ke PC (2006) Coating sin- gle-walled carbon nanotubes with phospholipids. J Phys Chem B 110(6):2475–2478. https://doi. org/10.1021/jp057252c

\114.\ Liu Z, Tabakman SM, Chen Z, Dai H (2009) Preparation of carbon nanotube bioconjugates for biomedical applications. Nat Protoc 4(9):1372–1382. https://doi.org/10.1038/nprot.2009.146

\115.\ Zhou XJ, Moran-Mirabal JM, Craighead HG, McEuen PL (2007) Supported lipid bilayer/carbon nanotube hybrids. Nat Nanotechnol 2(3):185–190. https://doi.org/10.1038/nnano.2007.34

\116.\ Yadav P, Rastogi V, Kumar Mishra A, Verma A (2014) Carbon nanotube: a versatile carrier for various biomedical applications. Drug Deliv Lett 4(2):156–169

\117.\ Aqel A, Abou El-Nour KMM, Ammar RAA, Al-Warthan A (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab J Chem 5(1):1–23. https://doi. org/10.1016/j.arabjc.2010.08.022

\118.\ Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119(2):105–118. https://doi.org/10.1016/j.mseb.2005.02.046

\119.\ Rüther MG, Frehill F, O’Brien JE, Minett AI, Blau WJ, Vos JG, in het Panhuis M (2004) Characterization of covalent functionalized carbon nanotubes. J Phys Chem B 108(28):9665–9668. https​ ://doi.org/10.1021/jp040266i

\120.\ Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10(3):751–758. https://doi.org/10.1021/ nl904286r

\121.\ Jorio A, Fantini C, Dantas MSS, Pimenta MA, Souza Filho AG, Samsonidze GG, Brar VW, Dresselhaus G, Dresselhaus MS, Swan AK, Ünlü MS, Goldberg BB, Saito R (2002) Linewidth of the Raman features of individual single-wall carbon nanotubes. Phys Rev B 66(11):115411. https://doi. org/10.1103/PhysRevB.66.115411

\122.\ Henrard L, Popov VN, Rubio A (2001) Infuence of packing on the vibrational properties of infinite and finite bundles of carbon nanotubes. Phys Rev B 64(20):205403. https://doi.org/10.1103/ PhysRevB.64.205403

\123.\ Henrard L, Hernández E, Bernier P, Rubio A (1999) van der Waals interaction in nanotube bundles: consequences on vibrational modes. Phys Rev B 60(12):R8521–R8524. https://doi.org/10.1103/ PhysRevB.60.R8521

\124.\ Wepasnick KA, Smith BA, Bitter JL, Howard Fairbrother D (2010) Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem 396(3):1003–1014. https://doi. org/10.1007/s00216-009-3332-5

\125.\ Umemura K, Izumi K, Oura S (2016) Probe microscopic studies of DNA molecules on carbon nanotubes. Nanomaterials (Basel). https://doi.org/10.3390/nano6100180

\126.\ Thostenson ET, Ren ZF, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912. https://doi. org/10.1016/S0266-3538(01)00094-X

\127.\ Meunier V, Lambin P (2004) Scanning tunnelling microscopy of carbon nanotubes. Philos Trans A Math Phys Eng Sci 362(1823):2187–2203. https://doi.org/10.1098/rsta.2004.1435

\128.\ Bychko I, Strizhak P (2018) Carbon nanotubes catalytic activity in the ethylene hydrogenation. Fullerenes Nanotubes Carbon Nanostruct 26(12):804–809. https://doi.org/10.1080/15363 83X.2018.1502176

1 3

\ 15  

Page 36 of 41

Topics in Current Chemistry

(2020) 378:15

 

 

 

 

\129.\ Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD (2005) High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 43(1):153– 161. https://doi.org/10.1016/j.carbon.2004.08.033

\130.\ Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4):507–514. https://doi.org/10.1016/S0008 -6223(00)00155-X

\131.\ Berber S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84(20):4613–4616

\132.\ Salvetat J-P, Bonard J-M, Thomson NH, Kulik AJ, Forró L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69(3):255–260. https://doi.org/10.1007/s0033 90050999

\133.\ Chłopek J, Czajkowska B, Szaraniec B, Frackowiak E, Szostak K, Béguin F (2006) In vitro studies of carbon nanotubes biocompatibility. Carbon 44(6):1106–1111. https://doi.org/10.1016/j.carbo n.2005.11.022

\134.\ Fernandes LF, Bruch GE, Massensini AR, Frezard F (2018) Recent advances in the therapeutic and diagnostic use of liposomes and carbon nanomaterials in ischemic stroke. Front Neurosci 12:453. https://doi.org/10.3389/fnins.2018.00453

\135.\ Tilmaciu CM, Morris MC (2015) Carbon nanotube biosensors. Front Chem 3:59. https://doi. org/10.3389/fchem.2015.00059

\136.\ Pasinszki T, Krebsz M, Tung TT, Losic D (2017) Carbon nanomaterial based biosensors for noninvasive detection of cancer and disease biomarkers for clinical diagnosis. Sensors (Basel). https:// doi.org/10.3390/s17081919

\137.\ Zhou Y, Fang Y, Ramasamy RP (2019) Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors (Basel). https://doi.org/10.3390/s19020392

\138.\ Song CK, Oh E, Kang MS, Shin BS, Han SY, Jung M, Lee ES, Yoon SY, Sung MM, Ng WB, Cho NJ, Lee H (2018) Fluorescence-based immunosensor using three-dimensional CNT network structure for sensitive and reproducible detection of oral squamous cell carcinoma biomarker. Anal Chim Acta 1027:101–108. https://doi.org/10.1016/j.aca.2018.04.025

\139.\ Qian P, Qin Y, Lyu Y, Li Y, Wang L, Wang S, Liu Y (2019) A hierarchical cobalt/carbon nanotube hybrid nanocomplex-based ratiometric fuorescent nanosensor for ultrasensitive detection of hydrogen peroxide and glucose in human serum. Anal Bioanal Chem 411(8):1517–1524. https:// doi.org/10.1007/s00216-019-01573-z

\140.\ Holzinger M, Baur J, Haddad R, Wang X, Cosnier S (2011) Multiple functionalization of sin- gle-walled carbon nanotubes by dip coating. Chem Commun 47(8):2450–2452. https://doi. org/10.1039/C0CC03928D

\141.\ Tang X, Bansaruntip S, Nakayama N, Yenilmez E, Chang YL, Wang Q (2006) Carbon nanotube DNA sensor and sensing mechanism. Nano Lett 6(8):1632–1636. https://doi.org/10.1021/nl060 613v

\142.\ Lee J, Morita M, Takemura K, Park EY (2018) A multi-functional gold/iron-oxide nanoparticleCNT hybrid nanomaterial as virus DNA sensing platform. Biosens Bioelectron 102:425–431. https​ ://doi.org/10.1016/j.bios.2017.11.052

\143.\ Chen Y, Guo S, Zhao M, Zhang P, Xin Z, Tao J, Bai L (2018) Amperometric DNA biosensor for Mycobacterium tuberculosis detection using fower-like carbon nanotubes-polyaniline nanohybrid and enzyme-assisted signal amplification strategy. Biosens Bioelectron 119:215–220. https://doi. org/10.1016/j.bios.2018.08.023

\144.\ Nouri M, Meshginqalam B, Sahihazar MM, Sheydaie Pour Dizaji R, Ahmadi MT, Ismail R (2018) Experimental and theoretical investigation of sensing parameters in carbon nanotube-based DNA sensor. IET Nanobiotechnol 12(8):1125–1129. https://doi.org/10.1049/iet-nbt.2018.5068

\145.\ Sun Y, Peng Z, Li H, Wang Z, Mu Y, Zhang G, Chen S, Liu S, Wang G, Liu C, Sun L, Man B, Yang C (2019) Suspended CNT-Based FET sensor for ultrasensitive and label-free detection of DNA hybridization. Biosens Bioelectron 137:255–262. https://doi.org/10.1016/j.bios.2019.04.054 \146.\ Gong H, Peng R, Liu Z (2013) Carbon nanotubes for biomedical imaging: the recent advances.

Adv Drug Deliv Rev 65(15):1951–1963. https://doi.org/10.1016/j.addr.2013.10.002

\147.\ Kuznik N, Tomczyk MM (2016) Multiwalled carbon nanotube hybrids as MRI contrast agents. Beilstein J Nanotechnol 7:1086–1103. https://doi.org/10.3762/bjnano.7.102

\148.\ Gao Y (2018) Carbon nano-allotrope/magnetic nanoparticle hybrid nanomaterials as T2 contrast agents for magnetic resonance imaging applications. J Funct Biomater. https://doi.org/10.3390/ jfb9010016

1 3

Topics in Current Chemistry

(2020) 378:15 \

Page 37 of 41  15

 

 

 

\149.\ Ania Servant IJ, Bussy Cyrill, Fabbro Chiara, da Ros Tatiana, Pach Elzbieta, Belen Ballesteros MP, Nicolay Klaas, Kostarelos Kostas (2016) Gadolinium-functionalised multi-walled carbon nanotubes as a T1 contrast agent for MRI cell labelling and tracking. Carbon 97:8

\150.\ Mehri-Kakavand G, Hasanzadeh H, Jahanbakhsh R, Abdollahi M, Nasr R, Bitarafan-Rajabi A, Jadidi M, Darbandi-Azar A, Emadi A (2019) Gdn (3 +)@CNTs-PEG versus Gadovist(R): in vitro assay. Oman Med J 34(2):147–155. https://doi.org/10.5001/omj.2019.27

\151.\ Moghaddam SE, Hernandez-Rivera M, Zaibaq NG, Ajala A, da Graca Cabreira-Hansen M, Mow- lazadeh-Haghighi S, Willerson JT, Perin EC, Muthupillai R, Wilson LJ (2018) A new high-perfor- mance gadonanotube-polymer hybrid material for stem cell labeling and tracking by MRI. Contrast Media Mol Imaging 2018:2853736. https://doi.org/10.1155/2018/2853736

\152.\ Antaris AL, Yaghi OK, Hong G, Diao S, Zhang B, Yang J, Chew L, Dai H (2015) Single chirality (6,4) single-walled carbon nanotubes for fuorescence imaging with silicon detectors. Small 11(47):6325–6330. https://doi.org/10.1002/smll.201501530

\153.\ Yudasaka M, Yomogida Y, Zhang M, Tanaka T, Nakahara M, Kobayashi N, Okamatsu-Ogura Y, Machida K, Ishihara K, Saeki K, Kataura H (2017) Near-infrared photoluminescent carbon nanotubes for imaging of brown fat. Sci Rep UK 7:44760. https://doi.org/10.1038/srep44760

\154.\ Kim J-W, Galanzha EI, Shashkov EV, Moon H-M, Zharov VP (2009) Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol 4(10):688–694. https://doi.org/10.1038/nnano.2009.231

\155.\ Liang C, Diao S, Wang C, Gong H, Liu T, Hong G, Shi X, Dai H, Liu Z (2014) Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv Mater 26(32):5646–5652. https://doi.org/10.1002/adma.201401825

\156.\ McDevitt MR, Chattopadhyay D, Jaggi JS, Finn RD, Zanzonico PB, Villa C, Rey D, Mendenhall J, Batt CA, Njardarson JT, Scheinberg DA (2007) PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS One 2(9):e907–e907. https://doi.org/10.1371/journal.pone.0000907

\157.\ Georgin D, Czarny B, Botquin M, Mayne-L’Hermite M, Pinault M, Bouchet-Fabre B, Carriere M, Poncy J-L, Chau Q, Maximilien R, Dive V, Taran F (2009) Preparation of 14C-labeled multiwalled carbon nanotubes for biodistribution investigations. J Am Chem Soc 131(41):14658–14659. https​ ://doi.org/10.1021/ja906319z

\158.\ Wang H, Wang J, Deng X, Sun H, Shi Z, Gu Z, Liu Y, Zhaoc Y (2004) Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol 4(8):1019–1024. https://doi. org/10.1166/jnn.2004.146

\159.\ Guo J, Zhang X, Li Q, Li W (2007) Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl Med Biol 34(5):579–583. https://doi.org/10.1016/j.nucmedbio.2007.03.003

\160.\ Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H (2007) In vivo biodistribution and highly e cient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2(1):47–52

\161.\ Al-Jamal KT, Nunes A, Methven L, Ali-Boucetta H, Li S, Toma FM, Herrero MA, Al-Jamal WT, ten Eikelder HMM, Foster J, Mather S, Prato M, Bianco A, Kostarelos K (2012) Degree of chemical functionalization of carbon nanotubes determines tissue distribution and excretion profile. Angew Chem Int Ed 51(26):6389–6393. https://doi.org/10.1002/anie.201201991

\162.\ Raphey VR, Henna TK, Nivitha KP, Mufeedha P, Sabu C, Pramod K (2019) Advanced biomedical applications of carbon nanotube. Mater Sci Eng C Mater Biol Appl 100:616–630. https://doi. org/10.1016/j.msec.2019.03.043

\163.\ Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong KT, Chen X (2019) Nanocarbons for biology and medicine: sensing, imaging, and drug delivery. Chem Rev. https:// doi.org/10.1021/acs.chemrev.9b00099

\164.\ Mohajeri M, Behnam B, Sahebkar A (2018) Biomedical applications of carbon nanomaterials: drug and gene delivery potentials. J Cell Physiol 234(1):298–319. https://doi.org/10.1002/ jcp.26899​

\165.\ Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9(6):674–679

\166.\ Rawal S, Patel MM (2019) Threatening cancer with nanoparticle aided combination oncotherapy. J Control Release 301:76–109. https://doi.org/10.1016/j.jconrel.2019.03.015

\167.\ Liu D, Zhang Q, Wang J, Fan L, Zhu W, Cai D (2019) Hyaluronic acid-coated single-walled carbon nanotubes loaded with doxorubicin for the treatment of breast cancer. Pharmazie 74(2):83–90. https://doi.org/10.1691/ph.2019.8152

1 3

\ 15  

Page 38 of 41

Topics in Current Chemistry

(2020) 378:15

 

 

 

 

\168.\ Kam NWS, Liu Z, Dai H (2005) Functionalization of carbon nanotubes via cleavable disulfide bonds for e cient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 127(36):12492–12493. https://doi.org/10.1021/ja053962k

\169.\ Taghavi S, Nia AH, Abnous K, Ramezani M (2017) Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 aptamer for combination gene and drug delivery into human gastric cancer cells. Int J Pharm 516(1):301–312. https://doi.org/10.1016/j.ijpharm.2016.11.027

\170.\ Guo C, Al-Jamal WT, Toma FM, Bianco A, Prato M, Al-Jamal KT, Kostarelos K (2015) Design of cationic multiwalled carbon nanotubes as e cient siRNA vectors for lung cancer xenograft eradication. Bioconjug Chem 26(7):1370–1379. https://doi.org/10.1021/acs.bioconjchem.5b00249

\171.\ Foldvari M, Bagonluri M (2008) Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomedicine Nanotechnol Biol Med 4(3):183–200. https://doi.org/10.1016/j.nano.2008.04.003

\172.\ Son KH, Hong JH, Lee JW (2016) Carbon nanotubes as cancer therapeutic carriers and mediators. Int J Nanomed 11:5163–5185. https://doi.org/10.2147/IJN.S112660

\173.\ Guo Q, Shen XT, Li YY, Xu SQ (2017) Carbon nanotubes-based drug delivery to cancer and brain. J Huazhong Univ Sci Technol Med Sci 37(5):635–641. https://doi.org/10.1007/s11596-017-1783-z \174.\ Moon HK, Lee SH, Choi HC (2009) In vivo near-infrared mediated tumor destruction by photothermal e ect of carbon nanotubes. ACS Nano 3(11):3707–3713. https://doi.org/10.1021/nn900

904h

\175.\ Needa AV, Carole D, Patrick M, Paul H, Robert EH, Joel S, Ricardo PS, Daniel ER, Roger GH (2018) Phosphatidylserine targeted single-walled carbon nanotubes for photothermal ablation of bladder cancer. Nanotechnology 29(3):035101

\176.\ Shiue RJ, Gao Y, Tan C, Peng C, Zheng J, Efetov DK, Kim YD, Hone J, Englund D (2019) Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity. Nat Commun 10(1):109. https://doi.org/10.1038/s41467-018-08047-3

\177.\ Xu Y, Shan Y, Cong H, Shen Y, Yu B (2018) Advanced carbon-based nanoplatforms combining drug delivery and thermal therapy for cancer treatment. Curr Pharm Des 24(34):4060–4076. https​ ://doi.org/10.2174/1381612825666181120160959

\178.\ Wang L, Shi J, Zhang H, Li H, Gao Y, Wang Z, Wang H, Li L, Zhang C, Chen C, Zhang Z, Zhang Y (2013) Synergistic anticancer e ect of RNAi and photothermal therapy mediated by functionalized single-walled carbon nanotubes. Biomaterials 34(1):262–274. https://doi.org/10.1016/j.bioma terials.2012.09.037

\179.\ Kafa H, Wang JT-W, Rubio N, Venner K, Anderson G, Pach E, Ballesteros B, Preston JE, Abbott NJ, Al-Jamal KT (2015) The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo. Biomaterials 53:437–452. https://doi.org/10.1016/j.biomateria ls.2015.02.083

\180.\ Kafa H, Wang JT-W, Rubio N, Klippstein R, Costa PM, Hassan HAFM, Sosabowski JK, Bansal SS, Preston JE, Abbott NJ, Al-Jamal KT (2016) Translocation of LRP1 targeted carbon nanotubes of di erent diameters across the blood–brain barrier in vitro and in vivo. J Control Release 225:217–229. https://doi.org/10.1016/j.jconrel.2016.01.031

\181.\ Wang JTW, Rubio N, Kafa H, Venturelli E, Fabbro C, Ménard-Moyon C, Da Ros T, Sosabowski JK, Lawson AD, Robinson MK, Prato M, Bianco A, Festy F, Preston JE, Kostarelos K, Al-Jamal KT (2016) Kinetics of functionalised carbon nanotube distribution in mouse brain after systemic injection: spatial to ultra-structural analyses. J Control Release 224:22–32. https://doi. org/10.1016/j.jconrel.2015.12.039

\182.\ Pedro Miguel Costa JT-WW, Morfin Jean-François, Khanum Tamanna, To Wan, Sosabowski Jane, Tóth Eva, Al-Jamal Khuloud T (2018) Functionalised carbon nanotubes enhance brain delivery of amyloid-targeting Pittsburgh compound B (PiB)-derived ligands. Nanotheranostics 2(2):168–183. https://doi.org/10.7150/ntno.23125

\183.\ Lohan S, Raza K, Mehta SK, Bhatti GK, Saini S, Singh B (2017) Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: a preclinical evidence. Int J Pharm 530(1):263–278. https://doi.org/10.1016/j.ijpharm.2017.07.080

\184.\ Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R (2017) Nerve growth factor-carbon nanotube complex exerts prolonged protective e ects in an in vitro model of ischemic stroke. Life Sci 179:15–22. https://doi.org/10.1016/j.lfs.2016.11.029

\185.\ Fiorito S, Russier J, Salemme A, Soligo M, Manni L, Krasnowska E, Bonnamy S, Flahaut E, Serafino A, Togna GI, Marlier LNJL, Togna AR (2018) Switching on microglia with electro-conductive multi walled carbon nanotubes. Carbon 129:572–584. https://doi.org/10.1016/j.carbon.2017.12.069

1 3

Topics in Current Chemistry

(2020) 378:15 \

Page 39 of 41  15

 

 

 

\186.\ Lee HJ, Park J, Yoon OJ, Kim HW, Lee DY, Kim DH, Lee WB, Lee N-E, Bonventre JV, Kim SS (2011) Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model. Nat Nanotechnol 6(2):121–125. https://doi.org/10.1038/nnano.2010.281

\187.\ Cellot GLM, Scaini D, Rauti R, Bosi S, Prato M, Gandolfi S, Ballerini L (2017) Successful regrowth of retinal neurons when cultured interfaced to carbon nanotube platforms. J Biomed Nanotechnol 13(5):559–567. https://doi.org/10.1166/jbn.2017.2364

\188.\ Salehi M, Naseri-Nosar M, Ebrahimi-Barough S, Nourani M, Khojasteh A, Hamidieh A-A, Amani A, Farzamfar S, Ai J (2018) Sciatic nerve regeneration by transplantation of Schwann cells via erythropoietin controlled-releasing polylactic acid/multiwalled carbon nanotubes/gelatin nanofibrils neural guidance conduit. J Biomed Mater Res B Appl Biomater 106(4):1463–1476. https:// doi.org/10.1002/jbm.b.33952​

\189.\ Xue X, Yang J-Y, He Y, Wang L-R, Liu P, Yu L-S, Bi G-H, Zhu M-M, Liu Y-Y, Xiang R-W, Yang X-T, Fan X-Y, Wang X-M, Qi J, Zhang H-J, Wei T, Cui W, Ge G-L, Xi Z-X, Wu C-F, Liang X-J (2016) Aggregated single-walled carbon nanotubes attenuate the behavioural and neurochemical e ects of methamphetamine in mice. Nat Nanotechnol 11(7):613–620. https://doi.org/10.1038/ nnano.2016.23

\190.\ Saliev T (2019) The advances in biomedical applications of carbon nanotubes. C 5:22. https://doi. org/10.3390/c5020029

\191.\ Mashal A, Sitharaman B, Li X, Avti PK, Sahakian AV, Booske JH, Hagness SC (2010) Toward carbon-nanotube-based theranostic agents for microwave detection and treatment of breast cancer: enhanced dielectric and heating response of tissue-mimicking materials. IEEE Trans Biomed Eng 57(8):1831–1834. https://doi.org/10.1109/TBME.2010.2042597

\192.\ Al Faraj A, Shaik AS, Ratemi E, Halwani R (2016) Combination of drug-conjugated SWCNT nanocarriers for e cient therapy of cancer stem cells in a breast cancer animal model. J Control Release 225:240–251. https://doi.org/10.1016/j.jconrel.2016.01.053

\193.\ Zhang M, Wang W, Wu F, Yuan P, Chi C, Zhou N (2017) Magnetic and fuorescent carbon nanotubes for dual modal imaging and photothermal and chemo-therapy of cancer cells in living mice. Carbon 123:70–83. https://doi.org/10.1016/j.carbon.2017.07.032

\194.\ Hou L, Yang X, Ren J, Wang Y, Zhang H, Feng Q, Shi Y, Shan X, Yuan Y, Zhang Z (2016) A novel redox-sensitive system based on single-walled carbon nanotubes for chemo-photothermal therapy and magnetic resonance imaging. Int J Nanomed 11:607–624. https://doi.org/10.2147/IJN. S98476

\195.\ Zhang M, Wang Wentao, Wu Fan, Yuan Ping, Chi Cheng, Zhou Ninglin (2017) Magnetic and fuorescent carbon nanotubes for dual modal imaging and photothermal and chemo-therapy of cancer cells in living mice. Carbon 123:14. https://doi.org/10.1016/j.carbon.2017.07.032

\196.\ Wang X, Wang C, Cheng L, Lee ST, Liu Z (2012) Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. J Am Chem Soc 134(17):7414–7422. https://doi.org/10.1021/ja300140c

\197.\ Zhao H, Chao Y, Liu J, Huang J, Pan J, Guo W, Wu J, Sheng M, Yang K, Wang J, Liu Z (2016) Polydopamine coated single-walled carbon nanotubes as a versatile platform with radionuclide labeling for multimodal tumor imaging and therapy. Theranostics 6(11):1833–1843. https://doi. org/10.7150/thno.16047​

\198.\ Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M, Ballerini L (2005) Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett 5(6):1107–1110. https://doi.org/10.1021/nl050637m

\199.\ Mazzatenta A, Giugliano M, Campidelli S, Gambazzi L, Businaro L, Markram H, Prato M, Ballerini L (2007) Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J Neurosci 27(26):6931–6936. https://doi.org/10.1523/ JNEUROSCI.1051-07.2007

\200.\ Ren J, Xu Q, Chen X, Li W, Guo K, Zhao Y, Wang Q, Zhang Z, Peng H, Li Y-G (2017) Superaligned carbon nanotubes guide oriented cell growth and promote electrophysiological homogeneity for synthetic cardiac tissues. Adv Mater 29(44):1702713. https://doi.org/10.1002/adma.20170 2713

\201.\ Silva E, Vasconcellos LMRd, Rodrigues BVM, dos Santos DM, Campana-Filho SP, Marciano FR, Webster TJ, Lobo AO (2017) PDLLA honeycomb-like sca olds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration. Mater Sci Eng C 73:31–39. https://doi.org/10.1016/j.msec.2016.11.075

1 3

\ 15  

Page 40 of 41

Topics in Current Chemistry

(2020) 378:15

 

 

 

 

\202.\ Gutiérrez-Hernández JM, Escobar-García DM, Escalante A, Flores H, González FJ, Gatenholm P, Toriz G (2017) In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multiwalled carbon nanotubes as sca old for bone regeneration. Mater Sci Eng C 75:445–453. https:// doi.org/10.1016/j.msec.2017.02.074

\203.\ Lima MD, Hussain MW, Spinks GM, Naficy S, Hagenasr D, Bykova JS, Tolly D, Baughman RH (2015) E cient, absorption-powered artificial muscles based on carbon nanotube hybrid yarns. Small 11(26):3113–3118. https://doi.org/10.1002/smll.201500424

\204.\ Liu ZF, Fang S, Moura FA, Ding JN, Jiang N, Di J, Zhang M, Lepro X, Galvao DS, Haines CS, Yuan NY, Yin SG, Lee DW, Wang R, Wang HY, Lv W, Dong C, Zhang RC, Chen MJ, Yin Q, Chong YT, Zhang R, Wang X, Lima MD, Ovalle-Robles R, Qian D, Lu H, Baughman RH (2015) Stretchy electronics. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science 349(6246):400–404. https://doi.org/10.1126/science.aaa7952

\205.\ Vashist A, Kaushik A, Vashist A, Sagar V, Ghosal A, Gupta YK, Ahmad S, Nair M (2018) Advances in carbon nanotubes-hydrogel hybrids in nanomedicine for therapeutics. Adv Healthc Mater 7(9):e1701213. https://doi.org/10.1002/adhm.201701213

\206.\ Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Kim SB, Nikkhah M, Khabiry M, Azize M, Kong J, Wan KT, Palacios T, Dokmeci MR, Bae H, Tang XS, Khademhosseini A (2013) Car- bon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7(3):2369–2380. https://doi.org/10.1021/nn305559j

\207.\ Joddar B, Garcia E, Casas A, Stewart CM (2016) Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies. Sci Rep 6:32456. https://doi.org/10.1038/srep32456

\208.\ Sun H, Zhou J, Huang Z, Qu L, Lin N, Liang C, Dai R, Tang L, Tian F (2017) Carbon nanotubeincorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs. Int J Nanomed 12:3109–3120. https://doi.org/10.2147/IJN.S128030

\209.\ Roshanbinfar K, Mohammadi Z, Sheikh-Mahdi Mesgar A, Dehghan MM, Oommen OP, Hilborn J, Engel FB (2019) Carbon nanotube doped pericardial matrix-derived electroconductive biohybrid hydrogel for cardiac tissue engineering. Biomater Sci. https://doi.org/10.1039/c9bm00434c

\210.\ Lee JR, Ryu S, Kim S, Kim BS (2015) Behaviors of stem cells on carbon nanotube. Biomater Res 19:3. https://doi.org/10.1186/s40824-014-0024-9

\211.\ Jan E, Kotov NA (2007) Successful di erentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett 7(5):1123–1128. https://doi. org/10.1021/nl0620132

\212.\ Chao TI, Xiang S, Chen CS, Chin WC, Nelson AJ, Wang C, Lu J (2009) Carbon nanotubes promote neuron di erentiation from human embryonic stem cells. Biochem Biophys Res Commun 384(4):426–430. https://doi.org/10.1016/j.bbrc.2009.04.157

\213.\ Namgung S, Kim T, Baik KY, Lee M, Nam JM, Hong S (2011) Fibronectin-carbon-nanotube hybrid nanostructures for controlled cell growth. Small 7(1):56–61. https://doi.org/10.1002/ smll.201001513

\214.\ Lichtenstein MP, Carretero NM, Perez E, Pulido-Salgado M, Moral-Vico J, Sola C, Casan-Pas- tor N, Sunol C (2018) Biosafety assessment of conducting nanostructured materials by using cocultures of neurons and astrocytes. Neurotoxicology 68:115–125. https://doi.org/10.1016/j.neuro

.2018.07.010

\215.\ Ramanathan M, Patil M, Epur R, Yun Y, Shanov V, Schulz M, Heineman WR, Datta MK, Kumta PN (2016) Gold-coated carbon nanotube electrode arrays: immunosensors for impedimetric detection of bone biomarkers. Biosens Bioelectron 77:580–588. https://doi.org/10.1016/j. bios.2015.10.014

\216.\ Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41(1):60–68. https://doi.org/10.1021/ar700089b

\217.\ Mazzaglia A, Scala A, Sortino G, Zagami R, Zhu Y, Sciortino MT, Pennisi R, Pizzo MM, Neri G, Grassi G, Piperno A (2018) Intracellular tra cking and therapeutic outcome of multiwalled carbon nanotubes modified with cyclodextrins and polyethylenimine. Colloids Surf B Biointerfaces 163:55–63. https://doi.org/10.1016/j.colsurfb.2017.12.028

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional a liations.

1 3

Topics in Current Chemistry

(2020) 378:15 \

Page 41 of 41  15

 

 

 

Afliations

Viviana Negri1 · Jesús Pacheco Torres2 · Daniel Calle3 · Pilar López Larrubia4

1\ Departamento de Biotecnología y Farmacia, Facultad de Ciencias Biomédicas, Universidad Europea de Madrid, Villaviciosa de Odón, Spain

2\ Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA

3\ Laboratorio de Imagen Médica, Hospital Universitario Gregorio Marañón, c/Dr. Esquerdo 56, 28007 Madrid, Spain

4\ Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM, c/Arturo Duperier 4, 28029 Madrid, Spain

1 3