Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

kalok_otvety

.pdf
Скачиваний:
115
Добавлен:
13.02.2015
Размер:
691.17 Кб
Скачать

Рибосомы органеллы, состоящие из большой и малой субъединиц. Могут находиться или на ЭПС или же располагаться свободно в клетке, образуя полисомы. Они состоят из рРНК и белка и образуются в ядрышке. В рибосомах происходит биосинтез белка.

Клеточный центр встречается в клетках животных, грибов, низших растений и отсутствует у высших растений. Он состоит из двух центриолей и лучистой сферы. Центриоль имеет вид полого цилиндра, стенка которого состоит из 9 триплетов микротрубочек. При делении клетки образуют нити митотического веретена, обеспечивающие расхождение хроматид в анафазе митоза и гомологичных хромосом при мейозе.

Микротрубочки трубчатые образования различной длины. Входят в состав центриолей, митотического веретена, жгутиков, ресничек, выполняют опорную функцию, способствуют перемещению внутриклеточных структур.

Микрофиламенты нитчатые тонкие образования, расположенные по всей цитоплазме, но особенно много их под клеточной оболочкой. Вместе с микротрубочками образуют цитоскелет клетки, обусловливают ток цитоплазмы, внутриклеточные перемещения пузырьков, хлоропластов и др. органелл.

14.Строение и функции ядер клетки. Хроматины и хромосомы, их взаимосвязь и тонкое строение. Гетеро и эухроматин. Виды и законы хромосом, понятие о кариотипе.

Ядро – обязательная часть эукариотической клетки. Главная функция ядра – хранение генетического материала в форме ДНК и передача ее дочерним клеткам при клеточном делении. Кроме того, ядро управляет белковыми синтезами, контролирует все процессы жизнедеятельности клетки. ( в растительной клетке ядро описал Р.Броун в 1831г., в животной – Т.Шванн в 1838г.)

Большинство клеток имеет одно ядро, обычно округлой формы, реже неправильной

формы.

Размеры ядра колеблются от 1мкм (у некоторых простейших) до 1мм (в яйцеклетках рыб, земноводных).

Встречаются двуядерные клетки (клетки печени, инфузорий) и многоядерные (в клетках поперечно – полосатых мышечных волокон, а так же в клетках ряда видов грибов и водорослей).

Некоторые клетки (эритроциты) – безъядерные, это редкое явление, носит вторичный

характер.

В состав ядра входят: 1)ядерная оболочка; 2)кариоплазма; 3)ядрышко;

4)хроматин или хромосомы. Хроматин находится в неделящемся ядре, хромосомы – в митотическом ядре.

Оболочка ядра состоит из двух мембран (наружной и внутренней). Наружная ядерная мембрана соединяется с мембранными каналами ЭПС. На ней располагаются рибосомы.

В мембранах ядра имеются поры (3000-4000). Через ядерные поры происходит обмен различными веществами между ядром и цитоплазмой.

Кариоплазма (нуклеоплазма) представляет собой желеобразный раствор, который заполняет пространство между структурами ядра (хроматином и ядрышками). Она содержит ионы, нуклеотиды, ферменты.

Ядрышко, обычно шаровидной формы (одно или несколько), не окружено мембраной, содержит фибриллярные белковые нити и РНК.

Ядрышки – не постоянные образования, они исчезают в начале деления клетки и восстанавливаются после его окончания. Ядрышки имеются только в неделящихся клетках. В ядрышках происходит формирование рибосом, синтез ядерных белков. Сами же ядрышки образуются на участках вторичных перетяжек хромосом (ядрышковых организаторах). У человека ядрышковые организаторы находятся на 13,14,15,21 и 22 хромосомах.

Хроматин и хромосомы

Хроматин – это деспирализованная форма существования хромосом. В деспирализованном состоянии хроматин находится в ядре неделящейся клетке.

Хроматин и хромосомы взаимно переходят друг в друга. По химической организации как хроматин, так и хромосомы не отличаются. Химическую основу составляет дезоксирибонуклеопротеин – комплекс ДНК с белками. С помощью белков происходит многоуровневая упаковка молекул ДНК, при этом хроматин приобретает компактную форму. Например, в деспирализованном (вытянутом) состоянии длина молекулы ДНК хромосомы человека достигает около 6 см, что примерно в 1000 раз превышает диаметр ядра клетки. Несмотря на то, что в неделящихся клетках хроматин находится в деспирализованном состоянии, тем не менее отдельные его участки спирализованы, т.е. хроматин неоднороден по структуре.

Спирализованные участки хроматина называются гетерохроматин, а деспирализованные

– эухроматин. На участках эухроматина идут процессы транскрипции (синтез иРНК). Гетерохроматин – неактивный участок хроматина, здесь не происходит транскрипции.

В начале клеточного деления хроматин скручивается (спирализуется) и образует хромосомы, которые хорошо различимы в световой микроскоп. Значит, хромосома – суперспирализованный хроматин. Спирализация достигает своего максимума в метафазе митоза. Каждая метафазная хромосома состоит их двух сестринских хроматид. Хроматиды содержат одинаковые молекулы ДНК, которые образуются при удвоении (репликации) ДНК в синтетический период интерфазы. Хроматиды соединены друг с другом в области первичной перетяжки – центромеры. Центромеры делят хромосомы на два плеча. В зависимости от места расположения центромеры различают следующие типы хромосом:

1)метацентрические (равноплечие);

2)субметацентрические (неравноплечие);

3)акроцентрические (палочковидные);

4)спутничные (имеют вторичную перетяжку, которая отделяет небольшой участок хромосомы, называемый спутником).

Число, величина и форма хромосом в ядрах клеток являются важными знаками каждого вида. Набор хромосом соматических клеток данного вида называется кариотипом.

Закон хромосом см распичатку.

15.Жизненный и митотический цикл клетки. Дифференцировка и специализация клеток. Изменение хромосом в процессе митотического деления. Биологическое значение митоза.

Клеточным циклом или жизненным циклом клетки называется совокупность процессов, происходящих в клетке от 1-го деления (появление ее в результате деления) до следующего деления или до смерти клетки.

Митотический цикл – период подготовки клетки к делению и само деление. Дифференцировка и специализация клеток это образование одинаковыми по строению и

выполняемым функциям клетками определенных тканей и органов.

Продолжительность митотического цикла составляет от 10 до 50 часов. В пресинтетический период клетка выполняет свои функции, увеличивается в размерах, т.е. активно растет, увеличивается количество митохондрий, рибосом, идет синтез белков, нуклеотидов, накапливается энергия в виде АТФ, синтезируется РНК.

Хромосомы представляют собой тонкие хроматиновые нити, каждая состоит из одной хроматиды. Содержание генетического материала в клетке обозначают следующим образом: с- количество ДНК в одной хроматиде, n набор хромосом.

Клетка в G1 содержит диплоидный набор хромосом, каждая хромосома имеет одну хроматиду (2с ДНК 2n хромосом).

В S- периоде происходит репликация молекул ДНК и их содержание в клетке удваивается, каждая хромосома становится двухроматидной (т.е. хроматида достраивает себе подобную). Генетический материал становится 4с2п, центриоли клетки тоже удваиваются.

Продолжительность S- периода у млекопитающих 6-10 часов. Клетка продолжает выполнять свои специфические функции.

В G2 - периоде клетка готовится к митозу: накапливается энергия, затухают все синтетические процессы, клетка прекращает выполнять основные функции, накапливаются белки для построения веретена деления. Содержание генетической информации не изменяется (4с2n). Продолжительность этого периода 3-6 часов.

Биологическое значение митоза

В результате митоза происходит точное распределение генетического материала между двумя дочерними клетками. Обе дочерние клетки получаютдиплоидный набор хромосом. Митоз обеспечивает поддержание постоянства числа хромосом в ряду поколений и служит клеточным механизмом процессов роста, развития организма, регенерации, бесполого размножения. При нарушении хода митоза, происходящего под действием некоторых ядов, наблюдается нерасхождение хромосом, нарушение их строения, повреждение веретена деления. Вследствие повреждений имеют место различные мутации.

1.Поддержание постоянства числа хромосом. Митоз – наследственно равное деление. Биологическое значение митоза состоит в строго одинаковом распределении

сестринских хромосом между дочерними клетками, что обеспечивает образование генетически равноценных клеток и сохраняет преемственность в ряду клеточных поколений.

2. Обеспечивание роста организма.

3.Замещение изношенных клеток, поврежденных тканей, регенерацию утраченных частей. Так, у человека замещаются клетки кожи, эпителий кишечника, эпителий легких, клетки

крови – всего в день 1011 клеток.

4. Митоз лежит в основе бесполого размножения.

16. Регуляция митотической активности клеток, проблемы клеточной пролиферации в

медицине.

Пролиферация - увеличение числа клеток путем митоза, которое приводит к росту и обновлению ткани. Интенсивность пролиферации регулируется веществами, которые вырабатываются как внутри клеток, так и вдали от клеток. Современные данные свидетельствуют о том, что одним из регуляторов пролиферации на клеточном уровне являются кейлоны. Кейлоны

– гормоноподобные вещества, являющиеся полипептидами или гликопротеинами. Они образуются всеми клетками и внутри клеток высших организмов, обнаружены в различных жидкостях организма, в том числе и в моче. Кейлоны подавляют митотическую активность клеток. Так же они участвуют в регуляции роста тканей, заживлении ран, иммунных реакциях.

Гормональные механизмы – дистантные регуляторы пролиферации на организменном уровне. Например, уровень эритроцитов в высокогорных районах повышается за счет секреции в специализированных клетках почек гормона эритропоэтина. У жителей высокогорья количество эритроцитов больше, чем у людей, живущих на равнине.

Кроме того, существуют гипотезы о причинах, побуждающих клетку делиться. Например:

-объемная – клетка, достигнув определенного объема, делится. Изменяются ядерно– цитоплазматические отношения (от 1/6 до 1/69),

-гипотеза «митогенетических лучей». Делящиеся клетки стимулируют к митозу расположенные рядом клетки,

-гипотеза «раневых гормонов». Поврежденные клетки выделяют особые вещества, способствующие митозу неповрежденных клеток.

17.Амитоз, эндомитоз, политения их характеристики и значение.

Амитоз - прямое деление клетки путем перешнуровки ядра без спирализации чивается равномерное распределение генетического материала между дочерними ядрами. После амитотического деления клетки не могут митотически делиться. Амитозом делятся клетки при воспалительных процессах, злокачественном росте. Амитоз встречается в клетках некоторых специализированных тканей, например, в поперечно – полосатой мускулатуре, соединительной ткани.

В слюнных железах некоторых двукрылых (мухи дрозофилы) можно увидеть гигантские хромосомы, превышающие по размерам обычные в сотни раз. Это политенные

хромосомы. Они образовались в соматических клетках в результате многократной репликации в S - периоде интерфазы исходной хромосомы без последующего ее расхождения, число хромонем (1000 и более) и количество ДНК увеличивается, что приводит к увеличению длины и диаметра хромосом. Диплоидное количество хромосом остается прежним.

При наблюдении окрашенных политенных хромосом в световой микроскоп хорошо заметны поперечные полосы (диски) темные и светлые (междисковые пространства). Каждый диск состоит из 1024 идентичных последовательностей ДНК, расположенных рядом друг с другом.

Плотно упакованный конденсированный материал дисков может образовывать пуфы. Пуф представляет собой участок, в котором хромосомные нити находятся в более раскрученном деконденсированном виде, по сравнению с обычным состоянием, когда они упакованы в диске. Образование пуфов связано с синтезом РНК в результате транскрипции. Размер пуфа зависит от интенсивности синтеза РНК. Пуф - это диск, содержащий активно транскрибируемый ген.

Эндомитоз?

18. Размножение, формы и эволюция. Преимущества полового размножения.

Размножение-свойство живых организмов воспроизводить себе подобных. Выделяют две основные формы размножения: бесполое и половое.

Бесполое размножение способствует сохранению наибольшей приспособленности в неменяющихся условиях обитания, т.к. образуются генетически точные копии родителей.

Формы бесполого размножения

1.Деление клетки надвое характерно для одноклеточных организмов (простейших,

бактерий).

2.Множественное деление – шизогония (малярийный плазмодий).

3.Спорообразование – размножение с помощью специальных клеток–спор (грибы, папоротники, мхи, водоросли).

4. Почкование - на материнском организме образуется бугорок – почка, развивающаяся в самостоятельный организм (кишечнополостные).

5.Фрагментация – распад тела на части, которые затем превращаются в полноценные организмы (кольчатые черви).

6.Вегетативное размножение – образование новой особи из части родительской. Встречается у растений и грибов.

Половое размножение

При половом размножении происходит рекомбинация наследственного материала и появляется потомство, генетически отличное от родителей.

Половое размножение характерно для многоклеточных, но существует и у одноклеточных организмов. Выделяют две формы полового процесса у одноклеточных:

1)конъюгация – при этой форме половые клетки не образуются

2)гаметическая копуляция – когда формируются половые клетки и происходит их попарное слияние.

Конъюгация как своеобразная форма полового процесса существует у инфузорий. Две инфузории временно соединяются, между ними образуется цитоплазматический мостик, через который происходит обмен наследственной информацией. Затем инфузории расходятся и у них появляются новые свойства и признаки.

Копуляцией называется половой процесс у одноклеточных организмов, при котором две особи приобретают половое различие, т.е. превращаются в гаметы и полностью сливаются, образуя зиготу.

Виды копуляции:

1)изогамия – две половые клетки не имеют внешних различий, обе маленькие и подвижные,

2)анизогамия – мужская половая клетка маленькая и подвижная, женская – крупная и тоже подвижная. Сливаться могут как маленькая с большой, так и две маленькие,

3)овогамия – половые клетки различны по форме и размерам.

Эволюция в лекции.

Преимущество полового размножения в том, что идет обмен генетической информации, и разнообразие потомства.

19. Гаметогенез.

Гаметогенез-развитие половых клеток - гамет. Развитие мужских половых клеток называется - сперматогенез, а женских – овогенез.

Развитие сперматозоидов происходит в извитых канальцах семенника. Стенки этих канальцев состоят из соединительной тканной основы и слоя сертолиевых клеток. Крупные клетки Сертоли обеспечивают созревающим сперматозоидам механическую опору, защиту и питание. Эти клетки секретируют и жидкость, с которой сперматозоиды проходят по канальцам семенника. Между клетками Сертоли находятся половые клетки на различных стадиях развития. У человека сперматозоиды образуются с момента наступления половой зрелости до самой смерти.

В сперматогенезе, как и в овогенезе, различают несколько периодов.

Период размножения. На этой стадии из первичных половых клеток образуются сперматогонии, которые несколько раз делятся путем митоза, в результате чего их количество возрастает. Сперматогонии имеют округлую форму, относительно большое ядро и небольшое количество цитоплазмы (2с2п).

Период роста. В этом периоде происходит рост половых клеток, интерфаза мейоза (репликация ДНК), накопление питательных веществ, образующиеся клетки носят название сперматоцитов I порядка (4с2n). Ядро их проходит стадию профазы мейоза I, т.е. совершается конъюгация гомологичных хромосом, кроссинговер и образуются биваленты.

Период созревания заключается в том, что происходят два последовательных мейотических деления. В результате первого деления из каждого сперматоцита I порядка образуются два сперматоцита II порядка (2с 1n), а после второго деления – 4 одинаковые по размерам сперматиды – мелкие округлые клетки. При этих делениях происходит уменьшение (редукция) числа хромосом вдвое (сДНК, n хромосом).

Сперматиды вступают в 4 период – формирования и превращаются в сперматозоиды. Сперматозоиды состоят из головки, шейки и хвостовой части (жгутик). Основную массу головки сперматозоида составляет ядро, цитоплазма практически отсутствует. В передней части головки образуется акросома (преобразованный аппарат Гольджи), содержащая фермент гиалуронидазу, который растворяет оболочки яйцеклетки во время оплодотворения. В средней части сперматозоида – шейке – располагаются центриоль и спиральная нить, образованная митохондриями. Микротрубочки одной из центриолей удлиняются, образуя осевую нить жгутика. Хвостовая часть сперматозоида образована 9 парами периферических микротрубочек, окружающих пару центральных «9+2»).

Продолжительность сперматогенеза у человека около 80 суток. Мужские половые клетки образуются в очень большом количестве. Так, в 3 см3 эякулята содержится 120-150 млн. сперматозоидов. За время половой жизни мужчина продуцирует не менее 500 млр.сперматозоидов.

Овогенез

Овогенез протекает в яичнике и включает периоды размножения, роста, созревания. В период размножения из зачатковых клеток гонобластов путем митозов увеличивается число диплоидных половых клеток – овогоний. Этот период завершается до рождения. Большая часть клеток гибнет.

Период роста – объем клеток увеличивается в сотни раз за счет накопления желтка и образуется овоцит I порядка. Происходит репликация ДНК (4с 2n).

Овоциты I порядка вступают в профазу I деления мейоза. Эта фаза у человека длится до полового созревания. С момента полового созревания происходит завершение первого деления мейоза и образуется маленькая клетка – направительное тельце и крупный овоцит II порядка (2с 1n). После второго деления мейоза овоцит II порядка снова делится и образуется 1 овотида (гаплоидная яйцеклетка) и направительное тельце. Первое направительное тельце тоже делится на два. Образующиеся направительные клетки затем исчезают.

У позвоночных рост овоцитов сопровождается образованием вокруг него фолликулярных клеток, которые регулируют синтез желтка в клетке, а на поздних стадиях овогенеза секретируются гормоны, индуцирующие созревание овоцита, фолликулярный слой выполняет защитную функцию. У человека мейоз завершается после оплодотворения.

Особенности овогенеза по сравнению со сперматогенезом:

-отсутствие периода формирования,

-протекание периода размножения в эмбриогенезе,

-длительная фаза роста,

-образование при созревании неодинаковых клеток,

-прекращение после менопаузы с полным исчезновением половых клеток. Гермафродитизм – наличие органов мужского и женского пола у одной и той же особи.

Различают гермафродитизм естественный и аномальный.

Естественный гермафродитизм широко распространен у животных (плоские черви). Организм продуцирует как яйцеклетки так и сперматозоиды.

Аномальный гермафродитизм наблюдается как у животных, так и у человека. Он может быть истинным, когда у одной особи имеются либо одновременно мужские и женские половые железы, либо одна половая железа, содержащая как женские, так и мужские половые клетки. Или ложным, когда у особи имеются половые железы одного пола, а наружные половые органы и вторичные половые признаки полностью или частично соответствуют признакам другого пола. Например, мужеподобные самки и женоподобные самцы.

20. Мейоз цитологическая и цитогенетическая характеристика. Отличие митоза от мейоза.

Мейоз – особый способ деления клеток, в результате которого происходит редукция (уменьшение) числа хромосом и переход клеток из диплоидного состояния в гаплоидное. Мейоз открыт немецким. ученым В.Флемингом у животных (1882 г.).

Мейоз состоит из двух последовательных делений, в процессе которых удвоение количества ДНК происходит только 1 раз – в интерфазе, предшествующей 1 делению мейоза (4с 2п). Отличительной особенностью 1 деления мейоза является сложная и продолжительная по времени профаза 1, в которой выделяют следующие стадии:

Профаза 1

Лептотена – начинают конденсироваться хромосомы, имеют вид тонких длинных нитей. Зиготена – попарное соединение гомологичных хромосом за счёт взаимодействия комплементарных участков ДНК – конъюгация. Пары конъюгирующих хромосом называются

бивалентами. Число бивалентов соответствует гаплоидному набору хромосом (23).

Пахитена – в результате усиливающей спирализации хромосомы, происходит тесное взаимное закручивание их в составе каждого бивалента. Хорошо видна её двухроматидная структура. В пахитене происходит кроссинговер – взаимный обмен генетическим материалом между гомологичными хромосомами.

Диплотена – начинается процесс расхождения и отталкивания гомологичных хромосом, но они остаются соединенными в некоторых местах, т.е. там где произошел кроссинговер, мостиками – хиазмами.

При образовании овоцита ( в овогенезе) появляется ещё одна стадия –диктиотена. На этой стадии образуются копии генов, идёт активный синтез р-РНК, происходит «разрыхление» хромосом, они приобретают вид «ламповых щеток». В таком состоянии хромосомы остаются до полового созревания женского организма, когда под воздействием гормона происходит завершение мейоза.

Диакинез – происходит дальнейшая спирализация и ещё большее отталкивание хромосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления – 4с 2п.

Метафаза 1.

Происходит выстраивание бивалентов по экватору, они образуют экваториальную пластинку -4с 2п.

Анафаза 1.

К полюсам расходятся гомологичные хромосомы, а не хроматиды, как при митозе, причём расхождение носит случайный характер.-4с 2п.

Телофаза 1

Происходит деление цитоплазмы и образование двух клеток – 2с п.

Интерфаза11

Очень не продолжительна и редупликации ДНК не происходит. Профаза 11 и метафаза 11 происходят так же, как и при митозе.

Анафаза 11

К полюсам расходятся хроматиды, из которых состоят хромосомы2с 2п. Причём, хроматиды могут быть различны по генетическим свойствам вследствие произошедшего кроссинговера.

Телофаза11

Происходит образование двух дочерних гаплоидных клеток 1с 1п.

Отличия

При митозе в профазе нет конъюгации гомологичных хромосом и кроссинговера.

Удвоение хромосом соответствует каждому делению клетки. В метафазе при митозе на экваторе выстраиваются хромосомы, состоящие из двух хроматид.

В анафазе при митозе к полюсам расходятся хроматиды. В телофазе дочерние клетки содержат то же число хромосом, что и материнские.

При мейозе в профазе I происходит конъюгация гомологичных хромосом, имеет место кроссинговер. Образуются биваленты хромосом. В метафазе I при мейозе на экваторе располагаются биваленты хромосом. При мейозе в анафазе I к полюсам расходятся хромосомы, состоящие из двух хроматид. В телофазе I мейоза число хромосом в дочерних клетках вдвое меньше, чем в материнских. Между I и II делениями мейоза в интерфазе нет синтеза ДНК. Мейоз осуществляется в диплоидных и полиплоидных клетках. В результате мейоза из одной клетки образуются четыре гаплоидных. Мейоз у человека имеет место во время овогенеза и сперматогенеза.

21.Оплодотворение и его биологическое значение. Партеногенез и его значение. Гиногенез, андрогенез. Половой диморфизм его генетическое и морфологическое значения эндокринное и поведенческое значение.

Оплодотворение - соединение двух гамет, в результате чего образуется

оплодотворенное яйцо - зигота - начальная стадия развития нового организма.

Зигота содержит материнскую и отцовскую гаметы. В зиготе возрастает ядерно-плазменное соотношение. Резко усиливаются обменные процессы. Зигота способна к дальнейшему развитию. Сущность оплодотворения состоит во внесении сперматозоидом отцовских хромосом. Сперматозоид оказывает стимулирующее влияние, вызывающее начало развития яйцеклетки.

Особую форму полового размножения представляет партеногенез. Известен естественный и искусственный партеногенез. Естественный партеногенез существует у ряда растений, червей, насекомых,ракообразных.

У пчел, муравьев встречается факультативный партеногенез. Из неоплодотворенных яиц развиваются самцы, а из оплодотворенных -самки. Таким образом, регулируется численное соотношение полов.

При облигатном (лат. obligato - обязательство) партеногенезе яйца развиваются без оплодотворения. Например, у кавказской скальной ящерицы. Этот вид сохранился благодаря партеногенезу, т.к. встреча особей затруднена. Виды представлены только самками, самостоятельно производящими только самок. Партеногенез может быть у птиц. У одной из пород индеек некоторые яйца развиваются партеногенетически, из них появляются только самцы. У многих видов партеногенез происходит циклически. У тлей, дафний в летнее время существуют только самки, размножающиеся партеногенетически, а осенью имеет место размножение с оплодотворением. Такое чередование форм размножения связано с большой гибелью особей. Искусственный партеногенез обнаружен в 1886 г. А.А. Тихомировым. Благодаря опытам с искусственным партеногенезом выяснили, что для развития яйца необходима активация. В естественных условиях эту функцию выполняют сперматозоиды после проникновения в яйцеклетку. В эксперименте активация может быть вызвана

различными воздействиями: химическим, механическим, электрическим, термическим и др. Эти факторы изменяют метаболизм яйцеклетки и активируют ее. Остальное см. Ярыгин.

22. Онтогенез его типы и периоды.

Онтогенез – процесс индивидуального развития особи от зиготы при половом размножении (или появлении дочерней особи при бесполом) до конца жизни. Термин «онтогенез» в 1866г. предложил немецкий ученый Э. Геккель. В основе онтогенеза лежит реализация наследственной информации на всех этапах развития.

Различают 3 типа онтогенеза:

1.Прямое развитие (неличиночное) характерно для рыб, рептилий, птиц.

2.Непрямое развитие (личиночное). Личиночный тип развития сопровождается метаморфозом, который характеризуется структурными преобразованиями особи. Различают развитие с неполным метаморфозом: 3 стадии (земноводные, прямокрылые) и с полным метаморфозом: 4 стадии (двукрылые, чешуекрылые).

3.Внутриутробное развитие (млекопитающие, человек).

Онтогенез многоклеточных организмов подразделяют на 3 периода:

- Прогенез (предэмбриональный) – формирование гамет, их слияние и образование

зиготы.

-Эмбриогенез (эмбриональный) – начинается с момента образования зиготы и заканчивается рождением или выходом из яйцевых оболочек.

-Постэмбриональный период начинается после рождения или выхода из яйцевых оболочек и завершается старением и смертью.

Для плацентарных млекопитающих и человека онтогенез принято делить на:

-Пренатальный (до рождения)

-Постнатальный (после рождения)

23.Характеристика эмбрионального развития ланцетника. Понятия о презумптивных зачатков.

1- ая часть см. уч.

Презумптивные зачатки (лат. – ожидаемые) – области раннего зародыша, из которых развиваются органы: нервная трубка, хорда, зародышевые листки эктодермы, энтодермы и мезодермы.

Место расположения презумптивных зачатков будущих органов было установлено с помощью методики маркировки частей зародыша, которая была предложена в 1925 г. В. Фогтом.

Пропитанные красителем (метиленовый синий) кусочки агар-агара прикладывают к поверхности эмбриона в различных местах. Благодаря диффузии красителя определенная группа клеток оказывается окрашенной.

Можно затем проследить, какие органы образовываются из этих участков в процессе последующих стадий эмбрионального развития. Методика маркировки частей зародыша сыграла большую роль и в изучении процессов гаструляции.

24.Эмбриональное развития земноводных.

Уамфибий яйцеклетка умеренно-телолецитальная, то есть содержит много желтка, который находится на вегетативном полюсе.

Эмбриогенез амфибий включает следующие стадии:

1.Зигота.

2.Дробление.

3.Бластула.

4.Гаструла.

5.Гистогенез и органогенез.

Образующаяся в результате оплодотворения зигота дробится полностью, но неравномерно. На анимальном полюсе образуются мелкие бластомеры – микромеры, на вегетативном – крупные клетки – макромеры. Дробление заканчивается образованием амфибластулы, стенка которой – бластодерма, состоит из нескольких рядов клеток, а бластоцель смещена к анимальному полюсу.

Процесс гаструляции начинается в области серого серпа, где возникает серповидная бороздка, представляющая собой зачаток бластопора. Серый серп образуется в плоскости вхождения сперматозоида в яйцо, на границе вегетативного и анимального полушарий.

Гаструляция происходит двумя способами: эпиболией и инвагинацией. Микромеры анимального полюса делятся митозом, образующийся клеточный материал наползает на вегетативный полюс и подворачивается внутрь бластулы через дорсальную губу бластопора. Бластопор разрастается в виде кольца. Клетки, попавшие внутрь, образуют сплошную массу и оттесняют бластоцель. Далее гаструляция происходит путем инвагинации, в результате которой клетки распределяются по внутренней поверхности бластодермы, что приводит к возникновению энтодермы и гастроцели. Образование мезодермы происходит энтероцельным способом.

25. Эмбриональное развитие птиц.

Яйцеклетка птиц резко телолецитальная, на вегетативном полюсе содержится очень много желтка.

В результате оплодотворения образуется одноклеточный зародыш – зигота, для которой характерно неполное, неравномерное дробление. В результате такого дробления образуется дискобластула, представленная распластанным на желтке бластодиском (бластодермой). Бластодиск состоит из нескольких слоев бластомеров. Центральная зона бластодиска является зародышевым щитком, из клеток которого строится тело зародыша. Далее от центра бластодиска к периферии находится внезародышевая часть, идущая на образование провизорных органов.

Стадию гаструляции у птиц можно разделить на два этапа. Первый этап заключается в том, что в результате перемещения клеточного материала бластодиска на желток происходит образованием зародышевой и внезародышевой энтодермы. Энтодерма формируется двумя способами – деляминацией и иммиграцией.

На втором этапе гаструляции в области зародышевого щитка происходит образование презумптивных зачатков: первичной полоски с желобком в центре, первичного узелка с центральной ямкой и светлого серпа. Центральная ямка и желобок являются аналогом первичного рта – бластопора. Из материала презумптивных зачатков образуются осевые органы и мезодерма.

Материал первичного узелка подворачивается через центральную ямку внутрь и образует хорду.

Материал первичной полоски подворачивается через ее края, погружается под эктодерму и располагается по бокам от хорды, образуя мезодерму. Причем из передней и центральной части первичной полоски образуется зародышевая мезодерма, а из задней части – внезародышевая мезодерма. В дальнейшем мезодерма дифференцируется на сомиты, ножки сомитов и спланхнотом.

Как только материал первичного узелка и первичной полоски перемещается под эктодерму, то сразу же разрастается третий презумптивный зачаток – светлый серп, из клеток которого образуется нервная трубка. Оставшаяся часть клеток бластодиска является эктодермой, которая также дифференцируется на зародышевую и внезародышевую.

После того, как образовалась нервная трубка тело зародыша начинает обосабливаться от желтка с помощью туловищной складки. Она сжимает со всех сторон тело зародыша, приподнимает его над желтком. Процесс образования туловищной складки способствует образованию первичной кишки, которая формируется из зародышевой энтодермы. На этом заканчивается период образования осевых органов.

26.Зародышевые и провизорные органы у позвоночных животных в эмбриогенезе.

В эмбриональном развитии позвоночных большую роль играют провизорные органы, которые функционируют у зародыша и отсутствуют во взрослом состоянии. К ним относятся: желточный мешок, амнион, серозная оболочка или хорион, аллантоис, плацента.

1.Желточный мешок впервые появляется у рыб и функционирует у пресмыкающихся

иптиц. В образовании стенки желточного мешка принимает участие внезародышевая эктодерма, внезародышевая энтодерма и внезародышевая мезодерма. Желточный мешок выполняет следующие функции:

а) в стенке образуются кровеносные сосуды, которые соединяются с кровеносной системой зародыша, благодаря этому обеспечивается тесная взаимосвязь зародыша

ипровизорных органов;

б) содержит запасы питательного вещества – желтка, то есть выполняет трофическую функцию; в) является органом эмбрионального кроветворения;

г) в стенке желточного мешка образуются первичные половые клетки – гонобласты, которые затем мигрируют в половые железы зародыша.

2.Амнион и серозная оболочка возникают в тесной взаимосвязи. Внезародышевая эктодерма вместе с париетальным листком мезодермы образует круговую складку, которая нарастает со всех сторон на зародыш и смыкается над ним. Зародыш оказывается заключенным в две оболочки: ближайшая к нему называется амниотической, а дальняя наружная от него – серозной или хорион.

Амниотическая полость заполнена жидкостью, таким образом зародыш развивается в водной среде, что предохраняет его от высыхания, трения и прилипания к оболочкам. Амнион играет защитную роль.

3.Серозная оболочка играет защитную роль и принимает участие в газообмене. Между серозной и амниотической оболочками находится полость – экзоцелом или внезародышевый целом.

4.Аллантоис первоначально выполняет функцию зародышевого мочевого пузыря. В нем скапливаются продукты азотистого обмена. Аллантоис является выростом задней кишки, который проникает в экзоцелом и разрастается там, заполняя его. Стенка аллантоиса, богатая кровеносными сосудами, плотно прилегает к серозной оболочке, что способствует выполнению аллантоисом дыхательной функции.

Умлекопитающих провизорные органы представлены желточным мешком, амнионом, хорионом, плацентой. Желточный мешок в связи с тем, что яйцеклетка почти лишена желтка, важного значения в питании зародыша не играет. Основная функция этого органа

кроветворная и образование первичных половых клеток.

Хорион или ворсинчатая оболочка, внедряясь в слизистую оболочку матки, образует вместе с ней плаценту. За счет хориона устанавливается связь зародыша с материнским организмом.

Функции плаценты многообразны: трофическая, дыхательная, выделительная, защитная, эндокринная.

Нарушения естественного хода эмбрионального развития приводят к формированию уродств или пороков развития. Пороками развития называют стойкие отклонения в строении органа или целого организма, приводящие к функциональным расстройствам.

Взависимости от причины, приведшей к неправильному развитию, различают пороки генетической, экзогенной (внешней) и комбинированной (мультифакториальной) природы.

Воснове пороков генетической природы лежат мутационные изменения наследственного материала.

Экзогенные пороки возникают в связи с действием на зародыш повреждающих внешних факторов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]