Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
6 функция_РЕЗЕРВ.doc
Скачиваний:
5
Добавлен:
15.02.2015
Размер:
1.05 Mб
Скачать

6.2 Дифференцирование функций, заданных неявно

Если yкак функция отx задается посредством соотношенияF(x,y)=0, гдеF(x,y) – выражение, содержащееx иy, тоyназываетсянеявной функциейотx. В некоторых случаях уравнениеF(x,y)=0 удается разрешить относительно y, и тогда можно перейти от неявного способа задания функции к явномуy=f(x), в других случаях такой переход невозможно осуществить. Независимо от возможности перехода производная отy поxдля функции, заданной неявно, может быть определена следующим образом:

  1. Находим производную от левой части равенства F(x,y)=0, учитывая при этомyкак функцию отx, и приравниваем ее к нулю.

2. Разрешаем полученное уравнение относительноy/; в результате будем иметь выражение производной от неявной функции в видеy/=f(x,y). Для определения второй производной от функции, заданной неявно, дифференцируем равенствоy/=f(x,y) (рассматриваяyкак функцию отx), а затем в правой части заменяемy/его выражением из равенстваy/=f(x,y). Аналогично поступаем при нахождении производных более высоких порядков.

Пример 7. Найти y// , если arctg y y + x = 0.

Решение. Дифференцируем данное выражение, рассматривая y как функцию от x :

или ,, ,

откуда .

Находим далее y//: .

В последнее равенство вместо y/ подставляем его значение. Тогда получаем .

6.3 Дифференцирование функций, заданных параметрически Если функция y аргумента X задается при помощи параметрических соотношений

x= x(t), y= y(t) (6.27)

причем x(t) и y(t) – дифференцируемые функции t и x(t)0. Производная от y по x находится путем дифференцирования равенств (1) :

dx=x/(t)dt , dy=y/(t)dt,

откуда . (6.28)

Вторую производную от y по x находим, дифференцируя по x соотношение (6.28):

.

Пример 6.8 Найти , если x=ln t, y=sin 2t.

Решение. Дифференцируем исходные соотношения:

, .

Отсюда .

Найдем вторую производную

.

    1. Дифференциал функции

Пусть функция y= f(x) дифференцируема на отрезке [a,b]. Производная этой функции в некоторой точке x отрезка [a,b] определяется равенством

.

Отношение при x0 стремится к определенному числу f /(x) и, следовательно, отличается от производной f /(x) на величину бесконечно малую: , где0 при  x0,

или y= f /(x)x + x.

Таким образом, приращение функции y представляет собой сумму двух слагаемых f /(x)x и x, которые являются бесконечно малыми при x0. Первое слагаемое есть бесконечно малая функция первого порядка относительно x, так как

.

Произведение x есть бесконечно малая величина высшего порядка относительно x, так как

.

Первое слагаемое f /(x)x называется главной частью приращения функции y.

Дифференциалом функции y= f(x) в точке называется главная часть ее приращения, равная произведению производной f /(x) на приращение x и обозначается через dy:

dy = f /(x) x .

Дифференциалом аргумента называется приращение аргумента

dx = x.

Тогда дифференциал функции равен произведению ее производной на дифференциал аргумента dy = f /(x) dx.

Геометрически дифференциал представляет собой приращение ординаты касательной к графику функции в точке M(x,y).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]