Добавил:
fizmathim.ru Решаю задачи по высшей математике. Фотографии решенных заданий по высшей математике https://fizmathim.ru/photo/ Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

7300 решенных задач по физике

.pdf
Скачиваний:
433
Добавлен:
09.11.2023
Размер:
12.39 Mб
Скачать

Наши сайты: Fizmathim.ru, reshaem-zadachi.ucoz.ru

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Решебник различных задач по физике

Рынок цифровых товаров. (iTunes & App Store ) (Игры (Продажа игровых ключей, пин-кодов и игровых ценностей), (Игровые аккаунты) все это и много другое на сайте https://plati.market?ai=378427

66.Выпуклое сферическое зеркало имеет радиус кривизны 60 см. На расстоянии 10 см от зеркала поставлен предмет высотой 2 см. Определить: 1) положение изображения, 2) высоту изображения. Построить чертёж. Решенная задача по физике

67.На горизонтальном дне бассейна глубиной h = 1,5 м лежит плоское зеркало. Луч света входит в воду под углом i1=450. Определить расстояние S от места вхождения луча в воду до места выхода его на поверхность воды после отражения от зеркала. Показатель преломления воды n =1,33. Решенная задача по физике

68.Предельный угол полного отражения на границе стекло – жидкость iпр =650. Определить показатель преломления жидкости, если показатель преломления стекла n = 1,5. Решенная задача по физике

69.Луч света выходит из стекла в вакуум. Предельный угол iпр = 420. Определить скорость света в стекле. Решенная задача по физике

70.На дне сосуда, наполненного водой (n = 1,33) до высоты h = 25 см, находится точечный источник света. На поверхности воды плавает непрозрачная пластинка так, что центр пластинки находится над источником света. Определить минимальный диаметр пластинки, при котором свет не пройдет через поверхность воды. Решенная задача по физике

71.На плоскопараллельную стеклянную пластинку (n = 1,5) толщиной 6 см падает под углом 350 луч света. Определить боковое смещение луча, прошедшего сквозь эту пластинку. Решенная задача по физике

72.На плоскопараллельную стеклянную пластинку толщиной 1 см падает луч света под углом 600. Показатель преломления стекла 1,73. Часть света отражается, а часть, преломляясь, проходит в стекло, отражается от нижней поверхности пластинки и, преломляясь вторично, обратно в воздух параллельно первому отраженному лучу. Определить расстояние l между лучами. Решенная задача по физике

73.Преломляющий угол равнобедренной призмы θ равен 100. Монохроматический луч падает на боковую грань под углом 100. Найти угол отклонения луча δ от первоначального направления, если показатель преломления материала призмы n = 1,6. Решенная задача по физике

74.Показатель преломления материала призмы для некоторого монохроматического луча равен 1,6. Каков должен быть наибольший угол падения этого луча на призму, чтобы при выходе луча из нее не наступило

полное внутреннее отражение? Преломляющий угол призмы 45 Решенная задача по физике

75.Монохроматический луч падает на боковую поверхность равнобедренной призмы и после преломления идет в призме параллельно ее основанию. Выйдя из призмы, он оказывается отклоненным на угол δ от своего первоначального направления. Найти в этом случае связь между преломляющим углом призмы θ, отклонением луча δ и показателем преломления n для этого луча. Решенная задача по физике

76.Луч света выходит из скипидара в воздух. Предельный угол полного внутреннего отражения для этого луча 420. Чему равна скорость распространения света в скипидаре? 23 Решенная задача по физике

77.На стакан, наполненный водой, положена стеклянная пластинка. Под каким углом должен падать на пластинку луч света, что бы от поверхности раздела воды со стеклом произошло полное внутреннее отражение? Показатель преломления стекла 1,5. Решенная задача по физике

78.На плоскопараллельную стеклянную пластинку (n = 1,5) толщиной d = 5 см падает под углом 300 луч света. Определить боковое смещение луча x, прошедшего сквозь эту пластинку. Решенная задача по физике

Наши сайты: Fizmathim.ru, reshaem-zadachi.ucoz.ru

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Решебник различных задач по физике

Рынок цифровых товаров. (iTunes & App Store ) (Игры (Продажа игровых ключей, пин-кодов и игровых ценностей), (Игровые аккаунты) все это и много другое на сайте https://plati.market?ai=378427

79.Монохроматический луч падает нормально на боковую поверхность призмы и выходит из нее отклоненным на 250. Показатель преломления материала призмы для этого луча 1,7. Найти преломляющий угол призмы θ. Решенная задача по физике

80.Построить изображение произвольной точки S, которая лежит на главной оптической оси собирающей линзы. Решенная задача по физике

81.Определить построением ход луча после преломления его собирающей (рис. а) и рассеивающей (рис. б) линзами. На рисунках MN – положение главной оптической оси; О – оптический центр линзы; F– фокус линзы. Среды по обе стороны одинаковы. Решенная задача по физике

82.На рисунке показаны положение главной оптической оси MN тонкой собирающей линзы и ход одного луча ABC через эту линзу. Построить ход произвольного луча DE. Среды по обе стороны линзы одинаковы. Решенная задача по физике

83.На рисунке показаны положение главной оптической оси MN тонкой рассеивающей линзы и ход луча 1, падающего на линзу, и преломлённого луча 2. Определить построением оптический центр и фокусное расстояние линзы. Среды по обе стороны линзы одинаковы. Решенная задача по физике

84.На рисунке а показаны положения главной оптической оси MN тонкой линзы, светящейся точки S и её изображение S’. Определить построением оптический центр О линзы и её фокусы F. Указать вид линзы. Среды по обе стороны линзы одинаковы. Решенная задача по физике

85.На рис. показаны положения главной оптической оси MN тонкой линзы, светящейся точки S и её изображение S’. MN – положение главной оптической оси. Определить построением положения оптического центра линзы и её фокусов F. Указать вид линзы. Среды по обе стороны линзы одинаковы. Решенная задача по физике

86.Горизонтально расположенное вогнутое зеркало заполнено коричным маслом на небольшую глубину. Радиус зеркала 70 см. Каково фокусное расстояние F такой системы? Решенная задача по физике

87.Пучок лучей, параллельных главной оптической оси, падает на двояковыпуклую линзу, главное фокусное расстояние которой 12 см. На расстоянии 14 см от первой линзы расположена вторая двояковыпуклая линза с главным фокусным расстоянием 2 см. Главные оптические оси линз совпадают. 1. Где получится изображение? 2. Какова оптическая сила данной системы линз? Выполнить построение. Решенная задача по физике

88.Двояковыпуклая линза с показателем преломления n = 1,5 имеет одинаковые радиусы кривизны поверхностей, равные 10 см. Изображение предмета с помощью этой линзы оказывается в 5 раз больше предмета. Определить расстояние от предмета до изображения. Решенная задача по физике

89.Из тонкой плоскопараллельной стеклянной пластинки изготовлены три линзы. Фокусное расстояние линз

1и 2, сложенных вместе, равно f‘, фокусное расстояние линз 2 и 3 равно f‘. Определить фокусное расстояние каждой из линз. Решенная задача по физике

90.У линзы, находящейся в воздухе, фокусное расстояние f1 = 5 см, а погружённой в раствор сахара f2 = 35 см. Определить показатель преломления n2 раствора. Решенная задача по физике

91.Тонкая линза, помещённая в воздухе, обладает оптической силой D1=5 дптр, а в некоторой жидкости

D2=0,48 дптр. Определить показатель преломления n2 жидкости, если показатель преломления n1 стекла, из которого изготовлена линза, равен 1,52. Решенная задача по физике

Наши сайты: Fizmathim.ru, reshaem-zadachi.ucoz.ru

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Решебник различных задач по физике

Рынок цифровых товаров. (iTunes & App Store ) (Игры (Продажа игровых ключей, пин-кодов и игровых ценностей), (Игровые аккаунты) все это и много другое на сайте https://plati.market?ai=378427

92.Воздушная полость в стекле имеет форму плосковыпуклой линзы. Найти фокусное расстояние этой линзы, если известно, что фокусное расстояние линзы из стекла, которое совпадает по форме с полостью, равно в воздухе F0. Решенная задача по физике

93.Лупа, представляющая собой двояковыпуклую линзу, изготовлена из стекла с показателем преломления n = 1,6. Радиусы кривизны R поверхностей линзы одинаковы и равны 12 см. Определить увеличение Г лупы. Решенная задача по физике

94.Человек без очков читает книгу, располагая её перед собой на расстоянии а = 12,5 см. Какой оптической силы D очки следует ему носить? Решенная задача по физике

95. На рисунке a указаны положения главной оптической оси MN тонкой линзы, светящейся точки S и её изображение S’. Указать вид линзы. Найти построением оптический центр О линзы и её фокусы F. Среды по обе стороны линзы одинаковы. Решенная задача по физике

96. Построить изображение произвольной точки S, которая лежит на главной оптической оси рассеивающей линзы. Решенная задача по физике

97.Двояковыпуклая линза из стекла (n = 1,5) обладает оптической силой D = 4 дптр. При её погружении в

жидкость (n1 = 1,7) линза действует как рассеивающая. Определить: 1) оптическую силу линзы в жидкости; 2) фокусное расстояние линзы в жидкости; 3) положение изображения точки, находящейся на главной оптической оси на расстоянии трёх фокусов от линзы (а = 3f), для собирающей линзы и рассеивающей линзы. Построить изображение точки для обоих случаев. Решенная задача по физике

98.Между неподвижным предметом и экраном помещена линза с фокусным расстоянием f = 16 см, сквозь которую лучи от предмета попадают на экран. Два положения линзы дают резкое изображение предмета на экране. Расстояние между двумя положениями l = 60 см. Найти расстояние L от предмета до экрана. Решенная задача по физике

99.Оптическая сила D объектива телескопа равна 0,5 дптр. Окуляр действует как лупа, дающая увеличение Г2 = 10. Какое увеличение Г даёт телескоп? Решенная задача по физике

100.Фокусное расстояние F1 объектива микроскопа равно 1 см, окуляра F2 = 2 см. Расстояние от объектива до окуляра L = 23 см. Какое увеличение Г даёт микроскоп? На каком расстоянии а от объектива находится предмет? Решенная задача по физике

Готовые решения задач по физике (100 решений часть 17)

1.В вогнутое сферическое зеркало R = 20 см налит тонким слоем глицерин. Определить главное фокусное расстояние F такой системы. Решенная задача по физике

2.Сколько длин волн монохроматического света с частотой колебаний ν = 5·1014 Гц уложится на пути длиной ℓ = 1,2 мм: 1) в вакууме; 2) в стекле? Решенная задача по физике

3.Определить длину отрезка l1, на котором укладывается столько же длин волн монохроматического света в вакууме, сколько их укладывается на отрезке l2 =5 мм в стекле. Показатель преломления стекла n2 = 1,5. Решенная задача по физике

4.Какой длины l1 путь пройдет фронт волны монохроматического света в вакууме за то же время, за какое он проходит путь длиной l2 = 1м в воде? Решенная задача по физике

Наши сайты: Fizmathim.ru, reshaem-zadachi.ucoz.ru

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Решебник различных задач по физике

Рынок цифровых товаров. (iTunes & App Store ) (Игры (Продажа игровых ключей, пин-кодов и игровых ценностей), (Игровые аккаунты) все это и много другое на сайте https://plati.market?ai=378427

5.На пути световой волны, идущей в воздухе, поставили стеклянную пластинку толщиной h = 1 мм. На

сколько изменится оптическая длина пути ∆L, если волна падает на пластинку: 1) нормально; 2) под углом α = 300? Решенная задача по физике

6.Два параллельных пучка световых волн 1 и 2 падают на стеклянную призму с преломляющим углом α =

300и после преломления выходят из нее. Найти оптическую разность хода ∆ световых волн после преломления их призмой. Решенная задача по физике

7.Оптическая разность хода ∆ двух интерферирующих волн монохроматического света равна 0,3λ. Определить разность фаз ∆φ. Решенная задача по физике

8.Найти все длины волн видимого света (от 0,76 до 0,38 мкм), которые будут: 1) максимально усилены; 2) максимально ослаблены при оптической разности хода ∆ интерферирующих волн, равной 1,8 мкм. Решенная задача по физике

9.В опыте Юнга расстояние между щелями равно 1 мм, а расстояние ℓ от щелей до экрана равно 3 м. Определить: 1) положение первой светлой полосы; 2) положение третьей темной полосы, если щели освещать монохроматическим светом с длиной волны λ = 0,5 мкм. Решенная задача по физике

10.В опыте с зеркалами Френеля расстояние d между мнимыми изображениями источника света равно 0,5 мм, расстояние ℓ от них до экрана равно 5 м. В желтом свете ширина интерференционных полос равна 6 мм. Определить длину волны λ желтого цвета. Решенная задача по физике

11.Если в опыте Юнга на пути одного из интерферирующих лучей поместить перпендикулярно этому лучу тонкую стеклянную пластинку (n = 1,5), то центральная светлая полоса смещается в положение, первоначально занимаемое пятой светлой полосой. Длина волны λ = 0,5 мкм. Определить толщину d пластинки. Решенная задача по физике

12.Расстояние d между двумя щелями в опыте Юнга равно 1 мм, расстояние l от щелей до экрана равно 3 м.

Определить длину волны λ, испускаемой источником монохроматического света, если ширина х полос интерференции на экране равна 1,5 мм. Решенная задача по физике

13. В опыте с зеркалами Френеля расстояние d между мнимыми изображениями источника света равно 0,5 мм, расстояние ℓ от них до экрана равно 3 м. Длина волны λ = 0,6 мкм. Определить ширину х полос интерференции на экране. Решенная задача по физике

14.Источник S света (λ = 0,6 мкм) и плоское зеркало М расположены, как показано на рисунке 10 (зеркало Ллойда). Что будет наблюдаться в точке Р экрана, где сходятся лучи |SP| и SMP, – свет или темнота, если |SP| = r = 2 м, a =0,55 мм, |SM| = |MP|? Решенная задача по физике

15.Определить, какую длину пути S1 пройдет фронт волны монохроматического света в вакууме за то же время, за которое он проходит путь S2 = 1,5 мм в стекле с показателем преломления n2 = 1,5. Решенная задача по физике

16. Расстояние d между двумя когерентными источниками света (λ = 0,5 мкм) равно 0,1 мм. Расстояние х между интерференционными полосами на экране в средней части интерференционной картины равно 1 см. Определить расстояние ℓ от источников до экрана. Решенная задача по физике

17. Расстояние между двумя щелями в опыте Юнга d = 0,5 мм (λ = 0,6

мкм). Определить расстояние ℓ от

щели до экрана, если ширина х интерференционных полос равна 1,2

мм. Решенная задача по физике

Наши сайты: Fizmathim.ru, reshaem-zadachi.ucoz.ru

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Решебник различных задач по физике

Рынок цифровых товаров. (iTunes & App Store ) (Игры (Продажа игровых ключей, пин-кодов и игровых ценностей), (Игровые аккаунты) все это и много другое на сайте https://plati.market?ai=378427

18. Два параллельных световых пучка, отстоящих друг от друга на расстоянии d = 5 см, падают на кварцевую призму (n = 1,49) с преломляющим углом α = 250. Определить оптическую разность хода этих пучков после преломления их призмой. Решенная задача по физике

19.Определить, во сколько раз изменится ширина интерференционных полос на экране в опыте с зеркалами Френеля, если фиолетовый светофильтр (0,4 мкм) заменить красным (0,7 мкм) Решенная задача по физике

20.В опыте Юнга расстояние l от щелей до экрана равно 3 м (рис.). Определить угловое расстояние между соседними светлыми полосами, если третья светлая полоса на экране отстоит от центра интерференционной картины на расстоянии 4,5 мм. Решенная задача по физике

21.Плоскопараллельная стеклянная пластинка толщиной d =1,2мкм и показателем преломления n =1,5 помещена между двумя средами с показателями преломления n1 и n2. Свет с длиной волны λ = 0,6мкм падает нормально на пластинку. Определить оптическую разность хода ∆ волн 1 и 2, отраженных от верхней и нижней поверхностей пластинки, и указать, усиление или ослабление интенсивности света происходит при интерференции в следующих случаях: 1) n1< n< n2; 2) n1>n>n2; 3) n1n2; 4) n1>n2. Решенная задача по физике

22.На мыльную пленку (n =1,3), находящуюся в воздухе, падает нормально пучок лучей белого света. При какой наименьшей толщине d пленки отраженный свет с длиной волны λ =0,55мкм окажется максимально усиленным в результате интерференции? Решенная задача по физике

23.Пучок монохроматических (λ = 0,6мкм) световых волн падает под углом i = 300 на находящуюся в воздухе мыльную (n =1,3) пленку. При какой наименьшей толщине d пленки отраженные световые волны будут максимально ослаблены интерференцией? Максимально усилены? Решенная задача по физике

24.На плоскопараллельную пленку с показателем преломления n =1,33 под углом i = 450 падает параллельный пучок белого света. Определить, при какой наименьшей толщине d пленки зеркально отраженный свет наиболее сильно окрасится в желтый свет (λ = 0,6мкм). Решенная задача по физике

25.Для уменьшения потерь света при отражении от стекла на поверхность объектива (n2=1,7) нанесена тонкая прозрачная пленка (n = 1,3). При какой наименьшей ее толщине dmin произойдет максимальное ослабление отраженного света, длина волны которого приходится на среднюю часть видимого спектра (λ0 = 0,56 мкм)? Считать, что лучи падают нормально к поверхности объектива. Решенная задача по физике

26.На тонкий стеклянный клин (n =1,55) падает нормально монохроматический свет. Двугранный угол α между поверхностями клина равен 2'. Определить длину световой волны λ, если расстояние b между смежными интерференционными максимумами в отраженном свете равно 0,3 мм. Решенная задача по физике

27.На тонкий стеклянный клин в направлении нормали к его поверхности падает монохроматический свет (λ = 600 нм). Определить угол α между поверхностями клина, если расстояние ∆x между смежными интерференционными минимумами в отраженном свете равно 4 мм. Решенная задача по физике

28.Две плоскопараллельные стеклянные пластинки образуют клин с углом α = 30". Пространство между пластинками заполнено глицерином. На клин нормально к его поверхности падает пучок монохроматического света с длиной волны λ = 500нм. В отраженном свете наблюдается интерференционная картина. Какое число N темных интерференционных полос приходится на 1 см длины клина? Решенная задача по физике

29.Между двумя плоскопараллельными стеклянными пластинками заключен очень тонкий воздушный клин. На пластинки нормально падает монохроматический свет (λ0 = 0,50 мкм). Определить угол φ между

Наши сайты: Fizmathim.ru, reshaem-zadachi.ucoz.ru

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Решебник различных задач по физике

Рынок цифровых товаров. (iTunes & App Store ) (Игры (Продажа игровых ключей, пин-кодов и игровых ценностей), (Игровые аккаунты) все это и много другое на сайте https://plati.market?ai=378427

пластинками, если в отраженном свете на протяжении l = 1,00 см наблюдается N = 20 интерференционных полос Решенная задача по физике

30.Плосковыпуклая линза с оптической силой D = 2 дптр выпуклой стороной лежит на стеклянной пластинке. Радиус r4 четвертого темного кольца Ньютона в проходящем свете равен 0,7 мм. Определить длину световой волны. Решенная задача по физике

31.Диаметры di и dk двух светлых колец Ньютона соответственно равны 4,0 и 4,8 мм. Порядковые номера колец не определялись, но известно, что между двумя измеренными кольцами расположены три светлых кольца. Кольца наблюдались в отраженном свете (λ = 500 нм). Найти радиус кривизны R плосковыпуклой линзы, взятой для опыта. Решенная задача по физике

32.Между стеклянной пластинкой и лежащей на ней плосковыпуклой стеклянной линзой налита жидкость, показатель преломления которой меньше показателя преломления стекла. Радиус r8 восьмого темного кольца Ньютона при наблюдении в отраженном свете (λ = 700 нм) равен 2 мм. Радиус R кривизны выпуклой поверхности линзы равен 1 м. Найти показатель преломления n жидкости. Решенная задача по физике

33.На установке для наблюдения колец Ньютона был измерен в отраженном свете радиус третьего темного кольца (k = 3). Когда пространство между плоскопараллельной пластиной и линзой заполнили жидкостью, то тот же радиус стал иметь кольцо с номером, на единицу большим. Определить показатель преломления n жидкости. Решенная задача по физике

34.Установка для наблюдения колец Ньютона освещается монохроматическим светом с длиной волны λ = 0,6мкм, падающим нормально. Пространство между линзой и стеклянной пластинкой заполнено жидкостью, и наблюдение ведется в проходящем свете. Радиус кривизны линзы R = 4 м. Определить показатель преломления n жидкости, если радиус второго светлого кольца r2 =1,8мм. Решенная задача по физике

35.В опыте с интерферометром Майкельсона для смещения интерференционной картины на 450 полос зеркало пришлось переместить на расстояние 0,135 мм. Определить длину волны λ падающего света. Решенная задача по физике

36.На пути одного из лучей интерференционного рефрактометра поместили откачанную трубку длиной 10 см. При заполнении трубки хлором интерференционная картина сместилась на 131 полосу. Определить

показатель преломления хлора nx, если наблюдение производилось с монохроматическим светом с длиной волны 0,59 мкм Решенная задача по физике

37.На толстую плоскопараллельную стеклянную пластинку с показателем преломления n1 = 1,5, покрытую очень тонкой пленкой постоянной толщины h с показателем преломления n2 = 1,4, падает нормально пучок параллельных лучей монохроматического света с длиной волны λ = 0,6мкм. Отраженный свет максимально ослаблен в результате интерференции. Определить толщину пленки h. Решенная задача по физике

38.Между двумя плоскопараллельными стеклянными пластинками положили очень тонкую проволочку, расположенную параллельно линии соприкосновения пластинок и находящуюся на расстоянии l = 75 мм от неё. В отражённом свете (λ = 0,5 мкм) на верхней пластинке видны интерференционные полосы. Определить диаметр d поперечного сечения проволочки, если на протяжении a = 30мм насчитывает k =16 светлых полос. Решенная задача по физике

39.Плосковыпуклая линза выпуклой стороной лежит на стеклянной пластинке. Определить толщину h слоя воздуха там, где в отраженном свете (λ=0,6мкм) видно первое светлое кольцо Ньютона. Решенная задача по физике

Наши сайты: Fizmathim.ru, reshaem-zadachi.ucoz.ru

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Решебник различных задач по физике

Рынок цифровых товаров. (iTunes & App Store ) (Игры (Продажа игровых ключей, пин-кодов и игровых ценностей), (Игровые аккаунты) все это и много другое на сайте https://plati.market?ai=378427

40.Установка для наблюдения колец Ньютона освещается монохроматическим светом с длиной волны λ =

0,55мкм, падающим нормально. Определить толщину dk воздушного зазора, образованного плоскопараллельной пластинкой и соприкасающейся с ней плосковыпуклой линзой в том месте, где в отраженном свете наблюдается четвертое темное кольцо. Решенная задача по физике

41.Установка для наблюдения колец Ньютона освещается монохроматическим светом, падающим нормально. При заполнении пространства между линзой и стеклянной пластинкой прозрачной жидкостью радиусы темных колец в отраженном свете уменьшились в 1,21 раза. Определить показатель преломления n2 жидкости. Решенная задача по физике

42.Для измерения показателя преломления аммиака в одно из плеч интерферометра Майкельсона помещена закрытая с обеих сторон откачанная до высокого вакуума стеклянная кювета длиной l =15 см. При заполнении кюветы аммиаком интерференционная картина для длины волны λ = 589 нм сместилась на 192 полосы. Определить показатель преломления n1 аммиака. Решенная задача по физике

43.Найти радиус 4-й зоны Френеля, если расстояние от источника до зонной пластинки равно 10 м, а расстояние от пластинки до экрана равно 15 м. Длина волны падающего света 0,5мкм. Решенная задача по физике

44.Определите радиус третьей зоны Френеля r3 для случая плоской волны. Расстояние от волновой поверхности до точки наблюдения равно 1,5 м. Длина волны λ = 0,6 мкм. Решенная задача по физике

45.Сферическая волна, распространяющаяся из точечного монохроматического источника света (λ =

0,6мкм), встречает на своем пути экран с круглым отверстием радиусом r = 0,4мм. Расстояние a от источника до экрана равно 1м. Определите расстояние b от отверстия до точки экрана, лежащей на линии, соединяющей источник с центром отверстия, где наблюдается максимум освещенности Решенная задача по физике

46.На щель падает нормально параллельный пучок монохроматического света, длина волны которого укладывается на ширине щели 6 раз. Под каким углом φ будет наблюдаться третий дифракционный минимум света? Решенная задача по физике

47.На щель шириной 0,05 мм падает нормально монохроматический свет (λ = 0,6мкм). Определить угол отклонения φ лучей, соответствующих второй светлой дифракционной полосе Решенная задача по физике

48.Монохроматический свет падает на длинную прямоугольную щель шириной а = 12∙10-6 м под углом α =

300к её нормали. Определите длину волны λ света, если направление φ на первый минимум (m = 1) от центрального фраунгоферова максимума составляет 330. Решенная задача по физике

49.На дифракционную решетку, содержащую n = 100 мм штрихов на 1 мм, падает нормально

монохроматический свет. Зрительная труба спектрометра наведена на максимум третьего порядка. Чтобы навести трубу на другой максимум того же порядка, ее нужно повернуть на ∆φ=200. Определить длину волны λ света (рис. а). Решенная задача по физике

50.Дифракционная решетка освещена параллельным пучком белого света. Разность углов отклонения конца первого и начала второго спектров (∆φ=0012’) длины волн этих крайних лучей можно принять равными λк = 0,76 мкм и λф = 0,38 мкм. Определить период d решетки. Решенная задача по физике

51.Дифракционная решетка освещена нормально падающим светом. В дифракционной решетке максимум второго порядка отклонен на угол φ1 = 140. На какой угол φ2 отклонен максимум третьего порядка? Решенная задача по физике

Наши сайты: Fizmathim.ru, reshaem-zadachi.ucoz.ru

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Решебник различных задач по физике

Рынок цифровых товаров. (iTunes & App Store ) (Игры (Продажа игровых ключей, пин-кодов и игровых ценностей), (Игровые аккаунты) все это и много другое на сайте https://plati.market?ai=378427

52.Дифракционная решетка содержит n =100штрихов на 1 мм. На решетку падает нормально

монохроматический свет (λ = 0,6 мкм). Максимум mmax какого наибольшего порядка дает решетка? Найти общее число Nmax дифракционных максимумов, которые дает эта решетка. Определить угол φmax дифракции, соответствующий последнему максимуму. Решенная задача по физике

53.При освещении дифракционной решетки белым светом спектры второго и третьего порядков отчасти перекрывают друг друга. На какую длину волны в спектре второго порядка накладывается фиолетовая граница (λ=0,4мкм) спектра третьего порядка? Решенная задача по физике

54.На дифракционную решетку, содержащую n=500 штрихов на 1 мм, падает в направлении нормали к ее поверхности белый свет. Спектр проецируется помещенной вблизи решетки линзой на экран. Определить ширину b спектра первого порядка на экране, если расстояние L линзы до экрана равно 3м. Границы видимости спектра λкр780 нм, λ =ф=400 нм. Решенная задача по физике

55.На дифракционную решетку под углом θ падает монохроматический свет с длиной волны λ. Найдите условие, определяющее направления на главные максимумы, если d>>mλ (m – порядок спектра). Решенная

задача по физике

56.На зонную пластинку падает плоская монохроматическая волна (λ = 0,5мкм). Определите радиус первой зоны Френеля r, если расстояние от зонной пластинки до места наблюдения b = 1 м. Решенная задача по физике

57.Точечный источник света (λ = 0,5 мкм) расположен на расстоянии a =1 м перед диафрагмой с круглым отверстием диаметра d = 2мм. Определить расстояние b от диафрагмы до точки наблюдения, если отверстие открывает три зоны Френеля. Решенная задача по физике

58.Перед щелью шириной a =28,5мкм, освещенной монохроматическим пучком света, помещена собирающая линза. На экране, отстоящем на l =10 см от линзы, наблюдаются полосы дифракции. Среднее расстояние между расположенными симметрично полосами равно ∆l = 0,23см. Определить длину световой волны λ. Решенная задача по физике

59.На дифракционную решетку нормально к ее поверхности падает параллельный пучок монохроматического света (λ = 0,5мкм). Помещенная вблизи решетки линза проектирует дифракционную картину на экран, находящийся в фокальной плоскости линзы и удаленный от нее на расстояние l =1 м. Расстояние между двумя максимумами первого порядка на экране x = 20,2 см. Определить: 1) постоянную

решетки d ; 2) число штрихов n на 1 мм; 3) общее число максимумов Nmax, которое дает решетка; 4) угол φmax, под которым виден последний максимум. Решенная задача по физике

60.Узкий параллельный пучок рентгеновского излучения с длиной волны λ = 245 пм падает на естественную грань монокристалла каменной соли. Определите расстояние d (рис.) между атомными плоскостями

монокристалла, если дифракционный максимум второго порядка наблюдается при падении излучения к поверхности монокристалла под углом скольжения θ = 610.Решенная задача по физике

61.Узкий пучок рентгеновского излучения падает под углом скольжения θ = 600 на естественную грань монокристалла NaCl (М = 58,5·10-3 кг/моль), плотность которого ρ=2,16 г/см3. Определите длину волны λ излучения, если при зеркальном отражении от этой грани наблюдается максимум третьего порядка. Решенная задача по физике

62.Диаметр D объектива телескопа равен 8 см. Каков о наименьшее угловое расстояние φ между двумя звёздами, дифракционные изображения которых в фокальной плоскости объектива получаются раздельными? При малой освещённости глаз человека наиболее чувствителен к свету с длиной волны λ = 0,5мкм. Решенная задача по физике

Наши сайты: Fizmathim.ru, reshaem-zadachi.ucoz.ru

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Решебник различных задач по физике

Рынок цифровых товаров. (iTunes & App Store ) (Игры (Продажа игровых ключей, пин-кодов и игровых ценностей), (Игровые аккаунты) все это и много другое на сайте https://plati.market?ai=378427

63.На шпиле высотного здания укреплены одна под другой две красные лампы (λ= 640 нм). Расстояние d между лампами 20 см. Здание рассматривают ночью в телескоп с расстояния r =15 км. Определить

наименьший диаметр Dmin объектива, при котором в его фокальной плоскости получаются раздельные дифракционные изображения. Решенная задача по физике

64.Дифракционная картина получена с помощью дифракционной решётки длиной l = 1,5 см и периода d = 5 мкм. Определить, в спектре какого наименьшего порядка этой картины получаются раздельные изображения двух спектральных линий с разностью длин волн Δλ = 0,1 нм, если линии лежат в крайней красной части спектра (λ = 760 нм). Решенная задача по физике

65.Подсчитать разрешающую способность дифракционной решетки с периодом d = 2,5∙10-4 см и шириной l = 3см в спектрах первого и четвертого порядков. Решенная задача по физике

66.На дифракционную решётку нормально падает пучок света. Красная линия λ1 =6300∙10-10 м видна в спектре третьего порядка под углом φ = 600. 1. Какая спектральная линия видна под этим же углом в спектре

четвёртого порядка? 2. Какое число штрихов на 1 мм имеет решётка? 3. Чему равна угловая дисперсия решётки для λ1 =6300∙10-10 м в спектре третьего порядка (ответ выразить в единицах СИ и в минутах на нанометр)? Решенная задача по физике

67.Угловая дисперсия Dφ дифракционной решётки для излучения некоторой длины волны (при малых углах дифракции) составляет 5мин/нм. Определить разрешающую силу R этой решётки для излучения той же длины волны, если длина ℓ решётки равна 2 см. Решенная задача по физике

68.Нормально поверхности дифракционной решётки падает пучок света. За решёткой помещена собирающая линза с оптической силой D = 1дптр. В фокальной плоскости линзы расположен экран.

Определить число n штрихов на 1 мм этой решётки, если при малых углах дифракции линейная дисперсия Dl = 1 мм/нм. Решенная задача по физике

69.На дифракционную решетку нормально ее поверхности падает монохроматический свет λ = 650 нм. За

решеткой находится линза, в фокальной плоскости которой расположен экран. На экране наблюдается дифракционная картина под углом дифракции φ = 300. При каком главном фокусном расстоянии f линзы линейная дисперсия Dl = 0,5 мм/нм? Решенная задача по физике

70.Узкий параллельный пучок монохроматического рентгеновского излучения падает на грань кристалла с

расстоянием 0,28 нм между его атомными плоскостями. Определить длину волны λ рентгеновского излучения, если под углом 300 к плоскости грани наблюдается дифракционный максимум второго порядка. Решенная задача по физике

71.В станице Зеленчукской (на Кавказе) установлен телескоп с диаметром зеркала D = 6м. Определить,

можно ли с его помощью разрешить (увидеть раздельно) компоненты двойной звезды, если угол между ними при рассмотрении с Земли составляет φ=10-6 рад. Решенная задача по физике

72.Чему равна постоянная дифракционной решетки, если она разрешит в первом порядке линии спектра калия λ1=4044∙10-10 м, λ2=4047∙10-10 м? Ширина решётки ℓ = 3 см. Решенная задача по физике

73.На дифракционную решетку, содержащую n = 500 штрихов на 1 мм, падает монохроматический свет с длиной волны λ = 700 нм. За решеткой помещена собирающая линза с главным фокусным расстоянием f = 50

см. Определить линейную дисперсию Dl такой системы для максимума второго порядка. Ответ выразить в миллиметрах на нанометр. Решенная задача по физике

Наши сайты: Fizmathim.ru, reshaem-zadachi.ucoz.ru

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Решебник различных задач по физике

Рынок цифровых товаров. (iTunes & App Store ) (Игры (Продажа игровых ключей, пин-кодов и игровых ценностей), (Игровые аккаунты) все это и много другое на сайте https://plati.market?ai=378427

74.Определите степень поляризации Р света, который представляет собой смесь естественного света с плоскополяризованным, если интенсивность поляризованного света в 5 раз больше интенсивности естественного. Решенная задача по физике

75.Во сколько раз ослабляется интенсивность света, проходящего через два николя, плоскости пропускания которых образуют угол α = 300, если в каждом из николей в отдельности теряется 10% интенсивности падающего на него света? Решенная задача по физике

76.Определите, во сколько раз уменьшится интенсивность естественного света, прошедшего через два николя, главные плоскости которых образуют угол в 600, если каждый из николей как поглощает, так и отражает 5% падающего на них света. Решенная задача по физике

77.Анализатор в k = 2 раза уменьшает интенсивность света, приходящего к нему от поляризатора. Определить угол α между плоскостями пропускания поляризатора и анализатора. Потерями интенсивности света в анализаторе пренебречь. Решенная задача по физике

78.Найти угол полной поляризации для света, отраженного от стекла с показателем преломления n = 1,5. Найти степень поляризации преломленного света. Падающий свет – естественный. Решенная задача по физике

79.На николь падает пучок частично поляризованного света. При некотором положении николя

интенсивность света, прошедшего через него, стала минимальной. Когда плоскость пропускания николя повернули на угол β = 450, интенсивность света возросла в k = 1,5 раза. Определить степень поляризации Р света. Решенная задача по физике

80.Пучок света, идущий в воздухе, падает на поверхность жидкости под углом iB = 540. Определить угол преломления i' пучка, если отраженный пучок полностью поляризован. Решенная задача по физике

81.Пучок естественного света, идущий в воде, отражается от грани алмаза, погруженного в воду. При каком угле падения iB отраженный свет полностью поляризован. Решенная задача по физике

82.Предельный угол iпр полного отражения пучка света на границе жидкости с воздухом равен 430. Определить угол Брюстера iB для падения луча из воздуха на поверхность этой жидкости. Решенная задача по физике

83.Алмазная призма находится в некоторой среде с показателем преломления n1. Пучок естественного света падает на призму. Определить показатель преломления n1 среды, если отраженный пучок максимально поляризован. Решенная задача по физике

84.Параллельный пучок естественного света падает на сферическую каплю воды. Найти угол φ между отраженным и падающим пучками в точке А. Решенная задача по физике

85.Пучок естественного света падает на стеклянный шар, находящийся в воде. Найти угол α между отраженным и падающим пучками в точке А. Показатель преломления n стекла принять равным 1,58. Решенная задача по физике

86.Свет, проходя через жидкость, налитую в стеклянный сосуд (n = 1,5), отражается от дна, причем отраженный свет плоскополяризован при падении его на дно сосуда под углом 410. Определите: 1)

показатель преломления жидкости n; 2) угол падения iпр света на дно сосуда, чтобы наблюдалось полное отражениеРешенная задача по физике

Соседние файлы в предмете Физика