Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
inform.docx
Скачиваний:
40
Добавлен:
12.03.2015
Размер:
395.82 Кб
Скачать

1.3. Базовые канонические структуры алгоритмов.

 Доказано, что любую программу можно написать с использованием трех управляющих структур:

            - следования, или последовательности операторов;             - развилки, или условного оператора;             - повторения, или оператора цикла.

Программа, составленная из канонических структур, будет называться регулярной программой, т.е. иметь 1 вход и 1 выход, каждый оператор в программе может быть достигнут при входе через ее начало (нет недостижимых операторов и бесконечных циклов). Управление в такой программе передается сверху-вниз. Снабженные комментариями, такие программы хорошо читабельны.

1) Следование

                                               A B;

        Действия А и В могут быть:             - отдельным оператором;             - вызовом с возвратом некоторой процедуры;             - другой управляющей структурой.

2) Развилка

                         IF   then   else  B;

Проверка  P  представляется предикатом, т.е. функцией, задающей логическое выражение или условие, значением которого может быть истина или ложь. Эта структура может быть неполной, когда отсутствует действие, выполняемое при ложном значении логического выражения. Тогда структура будет следующая:

                         IF   then  A ;

3) Повторение

цикл – пока

 

 

 

 

While  P do   ;

Действие А будет повторяться до тех пор, пока значение предиката будет оставаться истинным. Поэтому в действии А должно изменяться значение переменных, от которых зависит Р. В противном случае произойдет зацикливание. Вычисление предиката производится до начала выполнения действия А, и может случиться так, что действие А не будет выполняться ни разу.

цикл  до

                         Repeat   until  P;

Повторение типа  Repeat until всегда выполняется хотя бы 1 раз. Действие А перестает выполняться, как только предикат становится истинным.

           4) выбор – переключатель case (обобщение развилки), структура, облегчающая программирование без ущерба для ясности программы. Структура выбор полезна в том случае, когда требуется выбрать одну из нескольких альтернатив. 

 

            В зависимости от значения  Р выполняется одно из действий А, В, …Z. После чего происходит переход к выполнению следующей управляющей структуры.

Эволюция языков программирования

Язык программирования – это способ записи программ решения различных задач на ЭВМ в понятной для компьютера форме. Процессор компьютера непосредственно понимает язык машинных команд. Программы на языке машинных команд программисты писали лишь для самых первых ламповых машин – язык машинных команд первого поколения. Программирование на языке машинных команд – дело непростое. Программист должен знать числовые коды всех машинных команд, должен сам распределять память под команды программы и данные.

В 1950-х гг. появляются первые средства автоматизации программирования – языки Автокоды. Позднее для языков этого уровня стало применяться название «Ассемблеры». Появление языков типа Автокод-Ассемблер облегчило участь программистов. Переменные величины стали изобра­жаться символическими именами. Числовые коды операций заменились на мнемонические (словесные) обозначения, которые легче запомнить. Язык программирования стал понятнее для человека, но при этом удалился от языка машинных команд. Чтобы компьютер мог исполнять программы на Автокоде, потребовался специальный переводчик – транслятор. Транслятор – это системная программа, переводящая текст программы на Автокоде в текст эквивалентной программы на языке машинных команд.

Компьютер, оснащенный транслятором с Автокода, понимает Автокод. В этом случае можно говорить о псевдо-ЭВМ (аппаратура плюс транслятор с Автокода), языком которой является Автокод. Языки типа Автокод-Ассемблер являются машинно-ориентированными, т.е. они настроены на структуру машинных команд конкретного компьютера. Разные компьютеры с разными типами процессоров имеют разный Ассемблер. Языки программирования высокого уровня являются машинно-независимыми языками. Одна и та же программа на таком языке может быть выполнена на ЭВМ разных типов, оснащенных соответствующим транслятором. Форма записи программ на языке программирования высокого уровня по сравнению с Автокодом еще ближе к традиционной математической форме, к естественному языку. Очень скоро вы увидите, что, например, на языке Паскаль она почти такая же, как на школьном Алгоритмическом языке. Языки программирования высокого уровня легко изучаются, хорошо поддерживают структурную методику программирования.

Первыми популярными языками высокого уровня, появившимися в 1950-х гг., были Фортран, Кобол (в США) и Алгол (в Европе). Языки Фортран и Алгол были ориентированы на научно-технические расчеты математического характера. Кобол – язык для программирования экономических задач. В Коболе по сравнению с двумя другими названными языками слабее развиты математические средства, но зато хорошо развиты средства обработки текстов, организация вывода данных в форме требуемого документа. Для первых ЯПВУ предметная ориентация языков была характерной чертой.

Большое количество языков программирования появилось в 1960 – 1970-х гг. А за всю историю ЭВМ их было создано более тысячи. Но распространились, выдержали испытание временем немногие. В 1965 г. был разработан язык Бейсик. По замыслу авторов это простой язык, легко изучаемый, предназначенный для программирования несложных расчетных задач. Наибольшее распространение Бейсик получил на микроЭВМ и персональных компьютерах. На некоторых моделях школьных компьютеров программировать можно только на Бейсике. Однако Бейсик – неструктурный язык, и потому он плохо подходит для обучения качественному программированию. Справедливости ради следует заметить, что последние версии Бейсика для персональных компьютеров (например, QBasic) стали более структурными и по своим изобразительным возможностям приближаются к таким языкам, как Паскаль.

В эпоху ЭВМ третьего поколения получил большое распространение язык PL/I. Это был первый язык, претендовавший на универсальность, т.е. на возможность решать любые задачи: вычислительные, обработки текстов, накопления и поиска информации. Однако PL/I оказался слишком сложным языком. Для машин типа IBM 360/370 транслятор с него не мог считаться оптимальным, содержал ряд невыявленных ошибок. На ЭВМ класса мини и микро он вообще не получил распространения. Однако тенденция к универсализации языков оказалась перспективной. Старые языки были модернизированы в универсальные варианты – Алгол-68, Фортран-77.

Значительным событием в истории языков программирования стало создание в 1971 г. языка Паскаль. Наибольший успех в распространении этого языка обеспечили персональные компьютеры. В США разработали систему программирования Турбо Паскаль для ПК. Турбо Паскаль – это не только язык и транслятор с него, но еще и операционная оболочка, обеспечивающая пользователю удобство работы. Турбо Паскаль вышел за рамки учебного предназначения и стал языком профессионального программирования с универсальными возможностями. Транслятор с Турбо Паскаля по оптимальности создаваемых им программ близок к наиболее удачному в этом отношении транслятору – транслятору с Фортрана. В силу названных достоинств Паскаль стал основой многих современных языков программирования, например, таких как Ада, Модула-2 и др.

Язык программирования Си создавался как инструментальный язык для разработки операционных систем, трансляторов, баз данных и других системных и прикладных программ. Так же как и Паскаль, Си – это язык структурного программирования, но, в отличие от Паскаля, в нем заложены возможности непосредственного обращения к некоторым машинным командам, к определенным участкам памяти компьютера. Дальнейшее развитие Си привело к созданию языка объектно-ориентированного программирования Си++.

Модула-2 основан на базе языка Паскаль и содержит средства для создания больших программ.

ЭВМ пятого поколения называют машинами «искусственного интеллекта». Но прототипы языков для этих машин были созданы существенно раньше их физического появления. Это языки ЛИСП и Пролог.

Язык ЛИСП основан на понятии рекурсивно определенных функций. А поскольку доказано, что любой алгоритм может быть описан с помощью некоторого набора рекурсивных функций, то ЛИСП, по сути, является универсальным языком. С его помощью на ЭВМ можно моделировать достаточно сложные процессы, в частности интеллектуальную деятельность людей.

Язык Пролог используется для решения проблемы «искусственного интеллекта». Пролог позволяет в формальном виде описывать различные утверждения, логику рассуждений и заставляет ЭВМ давать ответы на заданные вопросы.

Реализовать тот или иной язык программирования на ЭВМ – это значит создать транслятор с этого языка для данной ЭВМ. Существуют два принципиально различных метода трансляции. Они называются соответственно компиляция и интерпретация. Для объяснения их различия можно предложить следующую аналогию: лектор должен выступить перед аудиторией на незнакомом ей языке. Перевод можно организовать двумя способами:

полный предварительный перевод – лектор заранее передает текст выступления переводчику, тот записывает перевод, размножает его и раздает слушателям (после чего лектор может и не выступать);

синхронный перевод – лектор читает доклад, переводчик одновременно с ним слово в слово переводит выступление.

Компиляция является аналогом полного предварительного перевода; интерпретация – аналогом синхронного перевода. Транслятор, работающий по принципу компиляции, называется компи­лятором; транслятор, работающий методом интерпретации, – интерпретатором.

При компиляции в память ЭВМ загружается программа-компилятор. Она воспринимает текст программы как исходную информацию. После завершения компиляции получается программа на языке машинных команд. Затем в памяти остается только программа, которая выполняется, и получаются требуемые результаты.

Интерпретатор в течение всего времени работы программы находится во внутренней памяти. В оперативное запоминающее устройство помещается программа. Интерпретатор в последова­тельности выполнения алгоритма «читает» очередной оператор программы, переводит его в команды и тут же выполняет эти команды. Затем переходит к переводу и выполнению следующего оператора. При этом результаты предыдущих переводов в памяти не сохраняются. При повторном выполнении одной и той же команды она снова будет транслироваться. При компиляции исполнение программы разбивается на два этапа: трансляцию и выполнение. При интерпретации, поскольку трансляция и выполнение совмещены, программа на ЭВМ проходит в один этап. Однако откомпилированная программа выполняется быстрее, чем интерпретируемая. Поэтому использование компиляторов удобнее для больших программ, требующих быстрого счета. Программы на Паскале, Си, Фортране всегда компилируются. Бейсик чаще всего реализован через интерпретатор.

Структу́рное программи́рование — методология разработки программного обеспечения, в основе которой лежит представление программы в виде иерархической структуры блоков. Предложена в 70-х годах XX века Э. Дейкстрой, разработана и дополнена Н. Виртом.

В соответствии с данной методологией

Любая программа представляет собой структуру, построенную из трёх типов базовых конструкций:

последовательное исполнение — однократное выполнение операций в том порядке, в котором они записаны в тексте программы;

ветвление — однократное выполнение одной из двух или более операций, в зависимости от выполнения некоторого заданного условия;

цикл — многократное исполнение одной и той же операции до тех пор, пока выполняется некоторое заданное условие (условие продолжения цикла).

В программе базовые конструкции могут быть вложены друг в друга произвольным образом, но никаких других средств управления последовательностью выполнения операций не предусматривается.

Повторяющиеся фрагменты программы (либо не повторяющиеся, но представляющие собой логически целостные вычислительные блоки) могут оформляться в виде т. н. подпрограмм (процедур или функций). В этом случае в тексте основной программы, вместо помещённого в подпрограмму фрагмента, вставляется инструкция вызова подпрограммы. При выполнении такой инструкции выполняется вызванная подпрограмма, после чего исполнение программы продолжается с инструкции, следующей за командой вызова подпрограммы.

Разработка программы ведётся пошагово, методом «сверху вниз».

Теорема о структурном программировании:

Основная статья: Теорема Бома-Якопини

Любую схему алгоритма можно представить в виде композиции вложенных блоков begin и end, условных операторов if, then, else, циклов с предусловием (while) и может быть дополнительных логических переменных (флагов). Эта теорема была сформулирована итальянскими математиками К. Бомом и Дж. Якопини в 1966 году и говорит нам о том, как можно избежать использования оператора перехода goto.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]