Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Тузина Светлана, Ефремова Анастасия Тема №3

.docx
Скачиваний:
5
Добавлен:
12.03.2015
Размер:
100.67 Кб
Скачать

Тема № 3 Физиология нервной системы.

1.Понятия возбудимости и возбуждения.

Возбудимость - способность живой субстанции реагировать на раздражения.

Возбуждение возникает, если раздражение вызывает деятельность раздражаемого органа и тем самым деятельность нервной системы.

Возбуждение, в биологии — реакция живых клеток на воздействие различных факторов внешней и внутренней среды. При возбуждении живая система переходит из состояния относительного физиологического покоя к деятельности. В основе возбуждения лежат сложные физико-химические процессы. Наиболее полно возбуждение изучено в нервных и мышечных клетках, где оно сопровождается возникновением распространяющегося биоэлектрического потенциала — нервного импульса. Способность клеток к возбуждению называется возбудимостью.

Возбуждение, в биологии — специфическая реакция нервных, мышечных и других возбудимых клеток в ответ на воздействие различных факторов внешней и внутренней среды; проявляется в виде генерации потенциала действия. Способность клеток к возбуждению называется возбудимостью (часто — электровозбудимостью).

Принципиальным отличием всех возбудимых клеток от невозбудимых является их способность изменять ионную проницаемость своей мембраны в ответ на действие электрического поля, химических и других раздражителей. Однако возбуждение возникает лишь в том случае, если сила воздействия достигла определенной величины, которую называют пороговой, и только после этого начинается генерация потенциала действия. Важно подчеркнуть, что приложение к клетке более сильных, чем пороговый, раздражающих стимулов также приводит к возбуждению, но его характер останется таким же, как и при действии порогового стимула. В частности, амплитуда и длительность генерируемого потенциала действия остаются постоянными величинами независимо от величины сверхпорогового стимула (эта особенность генерации потенциала действия и возбуждения получила название закона «все или ничего»).

К числу возбудимых относятся все нервные, мышечные, железистые, а также рецепторные клетки органов чувств. При возбуждении клетки органы или системы органов переходят из состояния относительного физиологического покоя к активности. В мышечных органах (скелетных мышцах, сердце, гладкомышечных органах) возбуждение сопровождается генерацией потенциала действия и сокращением мышечных клеток; в железистых клетках (например, в гипофизе, в клетках коры надпочечников) возбуждение и генерация потенциала действия приводит к секреции гормонов.

В нервных клетках возбуждение распространяется в виде нервного импульса по аксону и передается через синапсы к соседним клеткам. Возбуждение в нейронах и других клетках, как правило, сопровождается генерацией не одного, а целой серии импульсов (потенциалов действия). Информация о степени возбуждения, его характере кодируется частотой импульсов, их количеством и адресом, по которому идут сигналы.

2.нейрон- структурная и функциональная единица нервной системы. Проводящая функция нейрона.

Нейрон — это структурно-функциональная единица нервной системы.В нейроне выделяют следующие основные части: тело, отростки и их окончания.

Тело нейрона, размеры которого колеблются от 4 до 130 мкм, представляет собой скопление клеточной плазмы, в которой располагается ядро – носитель генетической информации, митохондрии – универсальные «генераторы» энергии, необходимой для обеспечения деятельности клетки, и большое количество структур, выполняющих различные специфические функции.

Поверхность нейрона, его оболочка, часто именуемая просто мембраной, не только обеспечивает обмен с окружающей средой, но, обладая свойствами полупроницаемой мембраны, является структурой, где развиваются сложные процессы биоэлектрогенеза, лежащие в основе главных функций нервной клетки.

Отростки нервных клеток являются выростами цитоплазмы. Различают два вида отростков. Дендриты – короткие, древовидно ветвящиеся, постепенно истончаются и заканчиваются в окружающих тканях. Количество их достигает десяти, они многократно увеличивают поверхность клетки.

Помимо дендритов нервная клетка всегда имеет один аксон (или нейрит). Этот отросток всегда более крупный, длинный (до 1 м) и менее ветвистый. Аксон заканчивается синапсом, при помощи которого он функционально взаимодействует с иннервируемыми структурами.

По своей функциональной значимости в составе рефлекторной дуги различают три вида нейронов:

рецепторные (чувствительные, афферентные), имеющие чувствительные нервные окончания, которые способны воспринимать раздражения из внешней или внутренней среды;

эффекторные (эфферентные), окончания аксонов которых передают нервный сигнал на рабочий орган;

ассоциативные (вставочные, центральные), являющиеся промежуточными в составе рефлекторной дуги и передающие информацию с чувствительного нейрона на эффекторные.

Следует иметь в виду, что на теле и отростках большинства нервных клеток имеется очень большое количество синапсов, через которые поступает информация с других нейронов.

Несмотря на громадное морфологическое и функциональное разнообразие нейронов, можно выделить ряд ключевых свойств и функций.

К числу наиболее важных свойств относятся:

1. Наличие трансмембранной разности потенциалов, т. е. между наружной и внутренней поверхностями оболочки нейрона в покое регистрируется разность потенциала порядка 90 мВ, наружная поверхность электроположительна по отношению к внутренней. Величина и направление трансмембранного тока меняются в зависимости от состояния нейрона.

2. Очень высокая чувствительность к некоторым химическим веществам (медиаторам) и электрическому току.

3. Способность к нейросекреции, т. е. к синтезу и выделению в окружающую среду или в синаптическую щель биологически активных веществ.

4. Высокий уровень энергетических процессов, что обусловливает необходимость постоянного притока основного источника энергии – глюкозы и кислорода, необходимого для окисления.

Принято различать следующие функции нейрона:

1. Воспринимающая – эта функция представлена двумя механизмами. Во-первых, чувствительные окончания дендритов способны обеспечить рецепцию, т. е. трансформацию специфической энергии раздражителя внешней или внутренней среды в неспецифический процесс нервного возбуждения, нервный импульс, который по отростку распространяется по направлению к телу нервной клетки. Во-вторых, на всех частях нейрона имеются многочисленные (до нескольких десятков тысяч) синапсы, при помощи которых химическим путем возбуждение передается от одного нейрона к другому. Химические вещества, осуществляющие эту передачу, обозначают медиаторы (или нейротрансмиттеры). К их числу, в частности, относятся адреналин, норадреналин, дофамин, серотонин, ацетилхолин, гамма-аминомасляная кислота и многие другие. В результате воздействия медиатора в теле нервной клетки развивается возбуждение и возникновение нервного импульса или снижение возбудимости нейрона – его торможение.

2. Интегративная – обработка одновременно или в течение короткого интервала времени поступающих нервных сигналов по механизму их алгебраической суммации, в результате которой на выходе нейрона формируется сигнал, несущий в себе информацию всех суммированных сигналов.

3. Мнестическая, основанная на существовании тонких молекулярных биофизических процессов, сохраняющих след от всякого предыдущего воздействия и благодаря этому трансформирующих характер ответной реакции на всякое последующее. По существу, это элементарная форма памяти и научения.

4. Проводниковая функция, суть которой состоит в том, что от тела нейрона по аксону к его окончанию в естественных условиях только в одном этом направлении распространяется, не затухая, нервный импульс. Скорость его распространения в зависимости от морфофункциональных особенностей проводника колеблется от нескольких сантиметров до 100–120 метров в секунду.

5. Передающая, проявляющаяся в том, что нервный импульс, достигнув окончания аксона, который, собственно, уже входит в структуру синапса, обусловливает выделение медиатора – непосредственного передатчика возбуждения к другому нейрону или исполнительному органу.

Часто в бытовых разговорах приходится слышать сожалеющее высказывание, что нервные клетки не восстанавливаются. Да, применительно к телу нейрона, это действительно так, и в ряде случаев это действительно плохо. Но следует также иметь в виду, что количество нейронов у человека значительно превышает его потребности на протяжении всей жизни. И, кроме того, как указывалось выше, нервные клетки на протяжении жизни человека «обучаются», «приобретают опыт», а потому включение в слаженный нейрональный ансамбль «необученного» элемента затруднило бы его работу.

3. Локальный и распространяющейся потенциалы.

Локальный потенциал (ЛП) - это местное нераспространяющееся подпороговое возбуждение, существующее в пределах от потенциала покоя (-70 мВ) до критического уровня деполяризации (-50 мВ).

В случае превышения критического уровня деполяризации локальный потенциал переходит в потенциал действия и порождает нервный импульс.

Критический уровень деполяризации (КУД) - это такой уровень электрического потенциала мембраны возбудимой клетки, от которого локальный потенциал переходит в потенциал действия. В основе этого явления лежит самонарастающее открытие потенциал-управляемых ионных каналов для натрия под действием нарастающей деполяризации.

КУД обычно составляет -50 мВ, но бывает разным у разных нейронов и может меняться при изменении возбудимости нейрона. Чем ближе КУД к потенциалу покоя (-70 мВ) и, наоборот, чем ближе потенциал покоя к КУД, тем более возбудимым является нейрон.

Важно понять то, что процесс рождения локального потенциала начинается с открытия ионных каналов. Открытие ионных каналов - это самое главное! Их нужно открыть для того, чтобы в клетку пошёл поток ионов и принёс в неё электрические заряды. Эти ионные электрические заряды как раз и вызывают смещение электрического потенциала мембраны вверх или вниз, т.е. локальный потенциал.

Если открываются ионные каналы для натрия (Na+), то в клетку вместе с ионами натрия попадают положительные заряды, и её потенциал смещается вверх в сторону нуля. Это - деполяризация, и так рождается возбуждающий локальный потенциал. Можно сказать, что возбуждающие локальные потенциалы порождаются натриевыми ионными каналами, когда они открываются.

Образно можно сказать и так: "Каналы открываются - потенциал рождается".

Если открываются ионные каналы для хлора (Cl-), то в клетку вместе с ионами хлора попадают отрицательные заряды, и её потенциал смещается вниз ниже потенциала покоя. Это гиперполяризация, и таким способом рождается тормозный локальный потенциал. Можно сказать, что тормозные локальные потенциалы порождаются хлорными ионными каналами.

Существует также ещё один механизм формирования тормозных локальных потенциалов - за счёт открытия дополнительных ионных каналов для калия (К+). В этом случае из клетки через них начинают выходить "лишние" порции ионов калия, они выносят положительные заряды и увеличивают электроотрицательность клетки, т.е. вызывают её гиперполяризацию. Таким образом, можно сказать, что тормозные локальные потенциалы порождаются дополнительными калиевыми ионными каналами.

Как видите, всё очень просто, главное - открыть нужные ионные каналы. Стимул-управляемые ионные каналы открываются раздражителем (стимулом). Хемо-управляемые ионные каналы открываются медиатором (возбуждающим или тормозным). Точнее, в зависимости от того на какие каналы (натриевые, калиевые или хлорные) будет действовать медиатор, таков будет и локальный потенциал - возбуждающий или тормозный. А медиатор как для возбуждающих локальных потенциалов, так и для тормозных, может быть одним и тем же, тут важно, какие ионные каналы будут связываться с ним своими молекулярными рецепторами - натриевые, калиевые или хлорные.

Виды ЛП:

1. Рецепторный. Возникает на рецепторных клетках или рецепторных окончаниях нейронов под действием стимула (раздражителя). Механизм возникновения такого рецепторного локального потенциала детально рассмотрен на примере восприятия звука слуховыми рецепторами - Молекулярные механизмы рецепции (трансдукции) звука по пунктам

2. Генераторный. Возникает на сенсорных афферентных нейронах (на их нервных окончаниях, перехватах Ранвье или аксонных холмиках) под действием медиаторов, которые выделили сенсорные клеточные рецепторы. Генераторный потенциал превращается в потенциал действия и нервный импульс при достижении им критического уровня деполяризации, т.е. он генерирует (порождает) нервный импульс.

3. Возбуждающий постсинаптический потенциал (ВПСП). Возникает на постсинаптической мембране синапса, т.е. он отражает передачу возбуждения от одного нейрона к другому. Он вызывает деполяризацию мембраны. Но обычно требуется целая серия ВПСП для того, чтобы родился нервный импульс, т.к. величины единичного ВПСП совершенно недостаточно для того, чтобы достичь критического уровня деполяризации.

4. Тормозный постсинаптический потенциал (ТПСП). Возникает на постсинаптической мембране синапса, но только не возбуждает её, а, наоборот, тормозит. Соотвтетственно, эта постсинаптическая мембрана входит в состав тормозного синапса, а не возбуждающего. ТПСП вызывает гиперполяризацию мембраны, т.е. сдвигает потенциал покоя вниз от нуля. Используются два механизма создания ТПСП: 1) "хлорный" - открытие ионных каналов для хлора (Cl-), через которые в клетку входят ионы хлора и увеличивают её отрицательность, 2) "калиевый" - открытие ионных каналов для калия (К+), через которые выходят ионы калия, что также увеличивает отрицательность в клетке.

5. Пейсмекерные потенциалы - это эндогенные близкие к синусоидальным периодические колебания мембранного потенциала с частотой 0,1-10 Гц и амплитудой 5-10 мВ. Они генерируются нейронами-пейсмекерами (водителями ритма) самостоятельно, без внешнего воздействия. Пейсмекерные локальные потенциалы обеспечивают периодическое достижение нейроном-пейсмекером критического уровня деполяризации и спонтанную (самопроизвольную) генерацию им потенциалов действия и, соответственно, нервных импульсов.

Где возникают локальные потенциалы (ЛП)?

Ответ прост: на сенсорных рецепторах, на рецепторных окончаниях нейронов и на постсинаптических мембранах синапсов. Там их и надо искать, чтобы привести примеры ЛП.

Места возникновения локальных потенциалов:

1. Сенсорные клеточные рецепторы (напримр, слуховые волосковые клетки, вкусовые рецепторы и т,д,).

2. Рецепторные окончания чувствительных (афферентных) нейронов (например, ноцицепторы болевых нейронов)..

3. Постсинаптические мембраны синаптических контактов.

Распространение возбуждения в нервных волокнах.

Изменения мембранного потенциала, вызываемые электрическим током, подразделяются на пассивные и активные.

Пассивные, или электротонические, изменения мембранного потенциала определяются физическими (электрическими) параметрами как самой мембраны, так и всей клетки (волокна) в целом.

Пассивные сдвиги мембранного потенциала возникают при действии на возбудимые образования электрического тока любой силы, формы или направления. Однако если при гиперполяризующем (анодном) и слабом деполяризующем (катодном) токах пассивные изменения потенциала могут наблюдаться в чистом (неосложненном) виде, то при близких к порогу и сверхпороговых деполяризующих стимулах они сопровождаются активными сдвигами потенциала: локальным ответом и потенциалом действия, связанными с изменениями ионной проницаемости мембраны.

Пассивные свойства мембраны и всего волокна в целом в значительной мере определяют условия возникновения и распространения возбуждения в нервном волокне.

4. Синапсы. Классификация синапсов. Преобразование химического сигнала в электрический; Возбуждающий (ВПСП) и тормозящий (ТПСП) постсинаптические потенциалы. Свойства химических синапсов. Возбуждающие и тормозные синапсы. Пресинаптическое и постсинаптическое торможение.

5. Синапсы. Классификация синапсов. Преобразование химического сигнала в электрический; Возбуждающий (ВПСП) и тормозящий (ТПСП) постсинаптические потенциалы. Свойства химических синапсов. Возбуждающие и тормозные синапсы. Пресинаптическое и постсинаптическое торможение.

Синапс-(греч. ???????, от ????????? — обнимать, обхватывать, пожимать руку) — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться.

Классификации синапсов:

В зависимости от механизма передачи нервного импульса различают

химические;

электрические — клетки соединяются высокопроницаемыми контактами с помощью особых коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе — 3,5 нм (обычное межклеточное — 20 нм)

Так как сопротивление внеклеточной жидкости мало(в данном случае), импульсы проходят не задерживаясь через синапс. Электрические синапсы обычно бывают возбуждающими.

Для нервной системы млекопитающих электрические синапсы менее характерны, чем химические.

смешанные синапсы: Пресинаптический потенциал действия создает ток, который деполяризует постсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом.

Наиболее распространены химические синапсы.

Химические синапсы можно классифицировать по их местоположению и принадлежности соответствующим структурам:

периферические

нервно-мышечные

нейросекреторные (аксо-вазальные)

рецепторно-нейрональные

центральные

аксо-дендритические — с дендритами, в т. ч.

аксо-шипиковые — с дендритными шипиками, выростами на дендритах;

аксо-соматические — с телами нейронов;

аксо-аксональные — между аксонами;

дендро-дендритические — между дендритами;

В зависимости от медиатора синапсы разделяются на

аминергические, содержащие биогенные амины (например, серотонин, дофамин);

в том числе адренергические, содержащие адреналин или норадреналин;

холинергические, содержащие ацетилхолин;

пуринергические, содержащие пурины;

пептидергические, содержащие пептиды.

При этом в синапсе не всегда вырабатывается только один медиатор. Обычно основной медиатор выбрасывается вместе с другим, играющим роль модулятора.

По знаку действия:

возбуждающие

тормозные.

Если первые способствуют возникновению возбуждения в постсинаптической клетке (в них в результате поступления импульса происходит деполяризация мембраны, которая может вызвать потенциал действия при определённых условиях.), то вторые, напротив, прекращают или предотвращают его появление, препятствуют дальнейшему распространению импульса. Обычно тормозными являются глицинергические (медиатор — глицин) и ГАМК-ергические синапсы (медиатор — гамма-аминомасляная кислота).

Тормозные синапсы бывают двух видов: 1) синапс, в пресинаптических окончаниях которого выделяется медиатор, гиперполяризующий постсинаптическую мембрану и вызывающий возникновение тормозного постсинаптического потенциала; 2) аксо-аксональный синапс, обеспечивающий пресинаптическое торможение. Синапс холинергический (s. cholinergica) — синапс, медиатором в котором является ацетилхолин.

В некоторых синапсах присутствует постсинаптическое уплотнение — электронно-плотная зона, состоящая из белков. По её наличию или отсутствию выделяют синапсы асимметричные и симметричные. Известно, что все глутаматергические синапсы асимметричны, а ГАМКергические — симметричны.

В случаях, когда с постсинаптической мембраной контактирует несколько синаптических расширений, образуются множественные синапсы.

К специальным формам синапсов относятся шипиковые аппараты, в которых с синаптическим расширением контактируют короткие одиночные или множественные выпячивания постсинаптической мембраны дендрита. Шипиковые аппараты значительно увеличивают количество синаптических контактов на нейроне и, следовательно, количество перерабатываемой информации. «Не-шипиковые» синапсы называются «сидячими». Например, сидячими являются все ГАМК-ергические синапсы.

Свойства химических синапсов

1. Односторонняя проводимость - одно из важнейших свойств химического синапса. Асимметрия - морфологическая и функциональная - является предпосылкой для существования односторонней проводимости.

2. Наличие синаптической задержки: для того, чтобы в ответ на генерацию ПД в области пресинапса выделился медиатор и произошло изменение постсинаптического потенциала (ВИСИ или ТПСП), требуется определенное время (синаптическая задержка). В среднем оно равно 0,2-0,5 мс.

3. Благодаря синаптическому процессу нервная клетка, управляющая данным постсинаптичсским элементом (эффектором), может оказывать возбуждающее воздействие или, наоборот, тормозное (это определяется конкретным синапсом).

4. В синапсах существует явление отрицательной обратной связи - антидромный эффект. Речь идет о том, что выделяемый в синаптическую щель медиатор может регулировать выделение следующей порции медиатора из этого же пресинаптического элемента путем воздействия на специфические рецепторы пресинаптичсской мембраны.

5. Эффективность передачи в синапсе зависит от интервала следования сигналов через синапс. Если этот интервал до некоторых пор уменьшать (учащать подачу импульса по аксону), то на каждый последующий ПД ответ постсинаитической мембраны (величина ВПСП или ТПСП) будет возрастать (до некоторого предела). Это явление облегчает передачу в синапсе, усиливает ответ постсинаптического элемента (объекта управления) на очередной раздражитель; оно получило название «облегчение» или «потенциация». В основе его лежит накопление кальция внутри пресинапса. Если частота следования сигнала через синапс очень большая, то из-за того, что медиатор не успевает разрушиться или удалиться из синаптической щели, возникает стойкая деполяризация или катодическая депрессия - снижение эффективности синаптической передачи. Это явление называется депрессией. Если через синапс проходит много импульсов, то в конечном итоге постсинаптическая мембрана может уменьшить ответ на выделение очередной порции медиатора. Это называется явлением дссепситизации - утратой чувствительности. В определенной мере десеиситизация похожа па процесс рефрактерности (утрата возбудимости). Синапсы подвержены процессу утомления. Возможно, что в основе утомления (временного падения функциональных возможностей синапса) лежат: а) истощение запасов медиатора, б) затруднение выделения медиатора, в) явление дссенситизации. Т. о., утомление - это интегральный показатель.

В мозге имеется ряд медиаторов, вызывающих возбуждение нейрона: норадреналин (его продуцируют адренергические нейроны), дофамин (дофаминергические нейроны), серото-нин, пептиды (пептидергические), глутаминовая кислота, аспарагиновая кислота и т.д. Во всех этих случаях выделяющийся медиатор взаимодействует со специфическим рецептором, в результате чего меняется проницаемость для ионов натрия, калия или хлора, и в итоге развивается деполяризация (ВПСП). Если она достигает критического уровня деполяризации, то возникает ПД (возбуждение нейрона).

Тормозные синапсы образованы специальными тормозными нейронами (точнее, их аксонами). Медиатором могут быть глицин, гамма-аминомасляная кислота (ГАМК) и ряд других веществ. Обычно глицин вырабатывается в синапсах, с помощью которых осуществляется постсинаптическое торможение. При взаимодействии глицина как медиатора с глициновыми рецепторами нейрона возникает гиперполяризация нейрона (ТПСП) и, как следствие, - снижение возбудимости нейрона вплоть до полной его рефрактсрности. В результате этого возбуждающие воздействия, оказываемые через другие аксоны, становятся малоэффективными или неэффективными. Нейрон выключается из работы полностью.

Возбуждающие синапсы. При деполяризации возбуждение по плазмолемме электротонически распространяется до аксонного хол­мика, где генерируются ПД

Синапс состоит из трех основных компонентов:

пресинаптической мембраны

постсинаптической мембраны

синаптической щели

Пресинаптическая мембрана является окончанием отростка нервной клетки. Внутри отростка в непосредственной близости от мембраны имеется скопление пузырьков (гранул), содержащих тот или иной медиатор. Пузырьки находятся в постоянном движении.

Постсинаптическая мембрана является частью клеточной мембраны иннервируемой ткани. Постсинаптическая мембрана в отличие от пресинаптической имеет белковые хеморецепторы к биологически активным (медиаторам, гормонам), лекарственным и токсическим веществам. Важная особенность рецепторов постсинаптической мембраны – их химическая специфичность, т.е. способность вступать в биохимическое взаимодействие только с определенным видом медиатора.

Синаптическая щель представляет собой пространство между пре- и постсинаптичекой мембранами, заполненное жидкостью, близкой по составу к плазме крови. Через нее медиатор медленно диффундирует от пресинаптической мембраны к постсинаптической.

Особенности строения нервно-мышечного синапса обусловливают его физиологические свойства.

Одностороннее проведение возбуждения (от пре- к постсинаптической мембране), обусловленное наличием чувствительных к медиатору рецепторов только в постсинаптической мембране.

Синаптическая задержка проведения возбуждения (время между приходом импульса в пресинаптическое окончание и началом постсинаптического ответа), связанная с малой скоростью диффузии медиатора в синаптическую щель по сравнению со скоростью прохождения импульса по нервному волокну.

Низкая лабильность и высокая утомляемость синапса, обусловленная временем распространения предыдущего импульса и наличием у него периода абсолютной рефрактерности.

Высокая избирательная чувствительность синапса к химическим веществам, обусловленная специфичностью хеморецепторов постсинаптической мембраны.

Этапы синаптической передачи.

Синтез медиатора. В цитоплазме нейронов и нервных окончаний синтезируются химические медиаторы – биологически активные вещества. Они синтезируются постоянно и депонируются в синаптических пузырьках нервных окончаний.

Секреция медиатора. Высвобождение медиатора из синаптических пузырьков имеет квантовый характер. В состоянии покоя оно незначительно, а под влиянием нервного импульса резко усиливается.

Взаимодействие медиатора с рецепторами постсинаптической мембраны. Это взаимодействие заключается в избирательном изменении проницаемости ионоселективных каналов эффекторной клетки в области активных центров связывания с медиатором. Взаимодействие медиатора со своими рецепторами может вызвать возбуждение или торможение нейрона, сокращение мышечной клетки, образование и выделение гормонов секреторными клетками. В случае увеличения проницаемости натриевых и кальциевых каналов усиливается поступление Na и Ca в клетку с последующей деполяризацией мембраны, возникновением ПД и дальнейшей передачей нервного импульса. Такие синапсы называются возбуждающими. Если повышается проницаемость калиевых каналов и каналов для хлора, наблюдается избыточный выход К из клетки с одновременной диффузией в нее Cl , что приводит к гиперполяризации мембраны, снижению ее возбудимости и развитию тормозных постсинаптических потенциалов. Передача нервных импульсов затрудняется или совсем прекращается. Такие синапсы называются тормозными.