Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Эл.техника / ОЭЭ Лекция 31.doc
Скачиваний:
142
Добавлен:
14.03.2015
Размер:
302.59 Кб
Скачать

19.3. Линии задержки

Во многих элементах электроники, автоматики и особенно в счетно-решающей технике часто требуется задерживать импульс на какое-то время t (время задержки) относительно какого-нибудь опорного (время его появления идентифицируется с нулевым моментом) импульса. Устройства, задерживающие выходной импульс относительно входного, называются линиями задержки (ЛЗ). Линии задержки могут быть естественными и искусственными.

Простейшей искусственной ЛЗ могут быть RC- или .RL-цепи (рис. 19.11, а, б), которые питаются от генератора прямоугольных им­пульсов (ГПИ). В обеих указанных цепях выходной импульс в точках 2-2' задерживается относительно входного импульса (точки 1-1) на tз = (2 ÷ 3)τ (рис. 19.12). С помощью пороговых устройств можно очень точно зафиксировать tз.

Кнедостаткам таких устройств следует отнести большое искажение импульса и особенно удлинение фронтов.

В сверхбыстродействующих электронных устройствах применяются искусственные ЛЗ. Одна из таких ЛЗ приведена на рис. 19.13, a. Такая многозвенная линия обладает дисперсией времени задержки импульсов, связанной с зависимостью параметров отдельных звеньев от частоты импульсов. Емкость С является постоянной, а индуктивность — пере­менной. Индуктивные катушки выполнены на ферритовых кольцах. Процессы, происходящие в такой нелинейной дискретной ЛЗ при передаче импульса, описываются нелинейными дифференциальными уравнениями, общее исследование которых достаточно сложное. Рас­смотренная ЛЗ обеспечивает задержку импульса на время не меньшее, чем длительность фронта входного импульса, и дает возможность получать задержанный импульс с крутым фронтом и значительной амплитудой на низкоомной нагрузке.

На рис. 19.13,б приведена схема линейной ЛЗ. Длительность задержки одного звена (пунктир на рисунке) tl определяется производ­ной фазочастотной характеристики:

(19.7)

где ωс =2/— частота среза. Если соблюдается предположение, что частоты, составляющие спектр сигнала, малы по сравнению с ωс, то tз = n, гдеn — число звеньев ЛЗ. Однако при подаче через ЛЗ перепадов напряжений необходимо считаться с неизбежными искажениями фронтов импульсов. Теорети­ческие и экспериментальные исследования показывают, что при идеаль­ном скачке напряжения U0 на входе ЛЗ длительность фронта выход­ного напряжения для одного звена при согласованной нагрузке, когда RH = ρ, где ρ — волновое сопротивление ЛЗ, составляет tф1 ≈ 1,13, а дляn-звенной ЛЗ — в n1/3 раз больше, т. е.

(19.8)

Длительность задержки, отсчитанной от момента подачи входного импульса, до момента, когда напряжение на выходе достигает 0,5U0, оказывается для одного звена равной

(19.9)

а для n-звенной ЛЗ

(19.10)

Для высокоомных нагрузок пригодна ЛЗ с использованием сегнето-электрика (рис. 19.14), которая состоит из звеньев, содержащих катушку постоянной индуктивности L и нелинейную емкость С (u) в виде конден­саторов с сегнетоэлектриком. Зависимость емкости этих конденсаторов от напряжения обусловлена тем, что диэлектрическая проницаемость у сегнетоэлектрика есть функция напряженности электрического поля ε = f(E). Такие конденсаторы называют варикондами. Задержка импуль­са в линии может достигать значений tз = nt1, где n — число звеньев.

Более перспективным, однако, является применение искусственных ЛЗ с полупроводниками. Такая ЛЗ выполняется в виде звеньев с постоян­ной индуктивностью L и нелинейной емкостью С (u) (рис. 19.15). В качестве нелинейной емкости используют варикапы, емкость которых изменяется при изменении обратного напряжения.

Все рассмотренные ЛЗ могут быть использованы и как форми­рующие нелинейные цепи для импульсов с фронтами длительностью в сотые доли наносекунды.

Соседние файлы в папке Эл.техника