Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_Gos_moi.docx
Скачиваний:
1149
Добавлен:
17.03.2015
Размер:
8.17 Mб
Скачать

1. Конструкционные материалы (классификация). Черные металлы. Сталь, углеродистая, классификация, маркировка, расшифровка маркировки, область применения (агрессивное воздействие среды, давление, температура).

К.М. - материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами К.М. являются механические свойства. К основным критериям качества К.М. относятся: прочность, вязкость, надежность, ресурс и др. Основным конструкционным материалом для аппаратуры нефтехимии является сталь. Применяют также чугун и цветные металлы. Неметаллические материалы; в том числе полимерные, в качестве конструкционных применяют редко; они служат в основном для облицовки или футеровки оборудования и отдельных узлов и деталей.

Сталь и чугун составляют группу черных металлов. Черные металлы – это сплав железа с углеродом и другими химическими элементами, при этом содержание железа должно быть не мене 45%, а углерода до 4,5%.

Сталь обладает хорошей прочностью, весьма технологична при обработке и изготовлении полуфабрикатов, обладает низкой стоимостью по отношению к другим конструкционным материалам, выдерживает высокие температуры и агрессивное воздействие коррозионно-активных сред.

Сталь - сплав железа с углеродом ( до 2,1 % ) и другими химическими элементами.

Примесями называют химические элементы, перешедшие в состав стали в процессе ее производства как технологические добавки или как составляющие шихтовых материалов.

По химическому составустали и сплавы черных металлов условно подразделяют на углеродистые (без легирующих элементов), низколегированные, среднелегированные, высоколегированные, сплавы на основе железа.

Углеродистые стали не содержат специально введенных легирующих элементов.

По назначению стали разделяют на конструкционные, инструментальные и стали с особыми физическими и химическими свойствами. Внутри классификации существуют более узкие подразделения сталей как по назначению, так и по свойствам.

По качеству стали подразделяют на стали обыкновенного качества, качественные, высококачественные и особо высококачественные. Главными признаками по качеству стали являются более жесткие требования по химическому составу и, прежде всего, по содержанию вредных примесей, таких как фосфор и сера.

Углеродистые сталиподразделяются на две подгруппы – стали углеродистые конструкционные обыкновенного качества и стали углеродистые качественные.

Стали конструкционные углеродистые обыкновенного качества

Широко применяются в строительстве и машиностроении, как наиболее дешевые, технологичные и обладающие необходимым комплексом свойств при изготовлении конструкций массового назначения.

Стали группы А поставляют с регламентированными механическими свойствами. Химический состав их не регламентируется.

Стали группы Б поставляют с регламентированным химическим составом, без гарантии механических свойств.

Стали группы В поставляют с регламентируемыми механическими свойствами и химическим составом. В настоящее время углеродистые стали не подразделяются на группы и при маркировке не ставятся буквы Б иВ.

Углеродистые стали обыкновенного качества, бываютспокойными (сп), полуспокойными (пс) и кипящими (кп). В их составе разное содержание кремния.

Углеродистые стали обыкновенного качества обозначаются буквами "Ст", за которыми следует цифра, указывающая порядковый номер марки стали, а не среднее содержание углерода в ней, хотя с повышением номера от Ст1 до Ст6 содержание углерода в стали увеличивается. Буквы Б и В указывают перед маркой.

Углеродистые конструкционные качественные стали обозначают двузначным числом, указывающим среднее содержание углерода в сотых долях процента для обозначения котельных марок в конце ставится буква К.

При конструировании технологической аппаратуры к конструкционным материалам должны предъявлять следующие требования:

1) достаточная общая химическая и коррозионная стойкость материала в агрессивной среде с заданными концентрацией, температурой и давлением, при которых осуществляется технологический процесс, а также стойкость против других возможных видов коррозионного разрушения (межкристаллитная коррозия, электрохимическая коррозия сопряженных металлов в электролитах, коррозия под напряжением и др.);

2) достаточная механическая прочность при заданных давлении и температуре технологического процесса, с учетом специфических требований, предъявляемых при испытании аппаратов на прочность, герметичность и т. п. и в эксплуатационных условиях при действии на аппараты дополнительных нагрузок различного рода (ветровая нагрузка, прогиб от собственного веса и т. д.);

2. Конструкционные материалы (классификация). Черные металлы. Сталь легированная, классификация (по разным признакам), биметаллы маркировка, расшифровка маркировки, область применения (агрес-сивное воздействие среды, давление, температура).

К.М. - материалы, из которых изготовляются детали конструк-ций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими па-раметрами К.М. являются механические свойства. К ос-новным критериям качества К.М. относятся: прочность, вязкость, надежность, ресурс и др. Основным конструкционным материалом для аппаратуры нефтехимии является сталь. Применяют также чугун и цветные металлы. Неметаллические материалы; в том числе полимерные, в качестве конструкционных при-меняют редко; они служат в основном для облицовки или футеровки оборудования и отдельных узлов и деталей.

Сталь и чугун составляют группу черных металлов. Чер-ные металлы – это сплав желе-за с углеродом и другими химическими элементами, при этом содержание железа должно быть не мене 45%, а углерода до 4,5%.

Сталь обладает хорошей прочностью, весьма техноло-гична при обработке и изготовлении полуфабрикатов, обладает низкой стоимостью по отношению к другим конструкционным материалам, выдерживает высокие температуры и агрессивное воздействие коррозионно-активных сред.

Сталь - сплав железа с углеродом ( до 2,1 % ) и другими химическими элементами ( примесями и легирующими добавками ).

Легирующие элементы - химические элементы, специ-ально введенные в сталь для получения требуемых строения, структуры, физико-химических и механических свойств.

Примесями называют химиче-ские элементы, перешедшие в состав стали в процессе ее производства как технологические добавки или как составляющие шихтовых материалов.

По химическому составу ста-ли и сплавы черных металлов условно подразделяют на угле-родистые (без легирующих элементов), низколегированные, среднелегированные, высоколегированные, сплавы на основе железа.

Углеродистые стали не содер-жат специально введенных леги-рующих элементов.

По назначению стали разде-ляют на конструкционные, инструментальные и стали с особыми физическими и химическими свойствами. Внутри классификации суще-ствуют более узкие подразделения сталей как по назначению, так и по свойствам.

По качеству стали подразделяют на стали обыкновенного качества, качественные, высококаче-ственные и особо высококаче-ственные. Главными признаками по качеству стали являются более жесткие требования по химическому составу и, прежде всего, по содержанию вредных примесей, таких как фосфор и сера.

Легированные стали – это сплавы на основе железа, в химический состав которых специально введены легирующие элементы, обеспечивающие при определенных способах произ-водства и обработки требуемую структуру и свойства. В легиро-ванных сталях содержание отдельных элементов больше, чем этих же элементов в виде примесей.

Обозначения в марках стали: Г – марганец, С – кремний, Х – хром, Н – никель, М – молиб-ден, В – вольфрам, Ф – ванадий, Т – титан, Д – медь, Ю – алю-миний, Б – ниобий, Р – бор, А – азот (в конце обозначения не ставятся). Буква "А" в конце указывает, что сталь относится к высококачественной, если буква в середине марки – сталь легирована азотом.

1. низколегированные с содержанием легирующего элемента до 2,5%,

2. среднелегированные (легированные) с содержанием легирующего элемента от 2,5% до 10%,

3. высоколегирован-ные с содержанием легирующего элемента > 10%.

К низколегированным конструкционным сталям относятся низкоуглеродистые свариваемые стали, содержащие недорогие и недефицитные легирующие элементы (до 2,5 %) и обладающие повышенной прочностью и пониженной склонностью к хрупким разрушениям по сравнению с углеродистыми сталями. Наиболее широко применяют в капитальном строительстве и для изготовления труб маги-стральных газопроводов, металлоконструкций машин и механизмов, в судостроении и других отраслях народного хозяйства.

Легированные конструкцион-ные стали применяются для наиболее ответственных и тяже-ло нагруженных деталей ма-шин.

По основным свойствам (по специальным свойствам) в зави-симости от назначения легированная сталь разделяется на следующие группы:

1. Сталь повышенной прочности. Обычно это низколегированные стали.Применяются для аппа-ратуры, работающей при повы-шенных давлениях и темпе-ратуре до 4750 С. Это стали марок 16ГС; 09Г2С. Стали не-устойчивы во многих агрессивных средах.

2. Теплоустойчивые стали. Механические свойства этих сталей изменяются незначитель-но с повышением температуры: отличаются высоким сопротив-лением ползучести и пределом длительной прочности. Тепло-устойчивые стали предназначены для изготов-ления деталей, работающих в нагруженном состоянии при температуре от 200 до 600оС в течении длительного времени. Основным легирующим элементом является Мо. К этим сталям относятся стали марок: 15М; 15Х5М. Обычно это низко и среднелегированные стали.

3. Коррозионно-стойкие (не-ржавеющие или кислотостой-кие) стали обладают стойкостью против различных видов коррозии и хорошо сопротивляются воздействию кислых сред. Наиболее распространены стали типа 18–8 (18% Cr и 8% Ni). 12Х18Н10Т.

4. Жаростойкие стали и сплавы (окалиностойкие), обла-дающие стойкостью против химического разрушения поверхности в газовых средах при t> 5500С, работающие в ненагруженном или слабонагруженном состоянии. Окалиностойкость сталям придают главным образом Cr; Si; AI; Ni. К окалиностойким относятся стали марки 10Х17; 08Х13 и т. д., хромоникелевые стали типа 18–8 и сплавы типа нихром: с 80% Ni и 20% Cr.

Маркировка марок жаропроч-ных и жаростойких сплавов на железоникелевой к никелевой основах состоит только из буквенных обозначений элемен-тов, за исключением никеля, после которого указывается цифра, обозначающая его среднее содержание в процен-тах.

Стали для отливок маркируют так же, как и деформируемые, но с добавлением буквы "Л" в конце марки.

5. Жаропрочные стали и сплавы, способные работать в нагруженном состоянии в течении определенного времени и обладающие при этом достаточной жаростойкостью, то есть обладающие одновременно свойствами теплоустойчивости и окалиностойкости ( то есть при-меняются при t> 5500С).

Эти стали легируют в основ-номCr и Mo; 15Х5М; Cr и Ni; 14Х17Н2; 20Х23Н18; 15Х5ВФ.

При выборе марки легирован-ной стали необходимо тщатель-но изучить требования, предъявляемые к ней по условиям эксплуатации: прочность при температуре эксплуатации и коррозионную стойкость в данной среде.

При конструировании технологической аппаратуры к конструкционным материалам должны предъявлять следующие требования:

1) достаточная общая химиче-ская и коррозионная стойкость материала в агрессивной среде с заданными концентрацией, температурой и давлением, при которых осуществляется техно-логический процесс, а также стойкость против других возможных видов коррози-онного разрушения (межкристаллитная коррозия, электрохимическая коррозия сопряженных металлов в элек-тролитах, коррозия под напряжением и др.);

2) достаточная механическая прочность при заданных давле-нии и температуре технологиче-ского процесса, с учетом специ-фических требований, предъяв-ляемых при испытании аппаратов на прочность, герметичность и т. п. и в эксплуатационных условиях при действии на аппараты дополни-тельных нагрузок различного рода (ветровая нагрузка, прогиб от собственного веса и т. д.);

3. Основные расчетные параметры. Температура, давление, допускаемое напряжение.

Основными расчетными параметрами для выбора конструкционного материала и расчета элементов аппарата на прочность являются температура и давление рабочего процесса.

Температура Различают рабочую и расчетную температуры. Рабочая температураt - это температура содержащейся или перерабатываемой среды в аппарате при нормальном протекании в нем технологического процесса. Расчетная температура tp- это температура которая используется для определения физико-механических характеристик материала и допускаемых напряжений. Ее определяют на основании теплотехнических расчетов или результатов испытаний. За расчетную температуру стенки сосуда или аппарата принимают наибольшее значение температуры стенки. При температуре ниже 20 за расчетную температуру при определении допускаемых напряжений принимают температуру 20. Если невозможно провести тепловые расчеты или измерения и если во время эксплуатации температура стенки повышается до температуры среды, соприкасающейся со стенкой, то за расчетную температуру следует принимать наибольшую температуру среды, но не ниже 20. при обогревании открытым пламенем, отработанными газами или электронагревателями расчетная температура принимается равной температуре среды увеличенной на 20 при закрытом обогреве и на 50 при прямом обогреве, если нет более точных данных.

При наличии у аппарата тепловой изоляции расчетная температура его стенок принимается равной температуре поверхности изоляции, соприкасающейся со стенкой, плюс 20. при отрицательной рабочей температуре элемента за расчетную принимается температура равная 20 ,т.е. расчетная температура может быть быть опрделена по сведущей формуле

Давление Различают рабочее, расчетное, условное и пробное давления.

Рабочее давление Р - максимальное внутреннее избыточное или наружное давление, возникающее при нормальном протекании рабочего процесса. Без учета допустимого кратковременного повышения давления во время действия предохранительного клапана или других предохранительных устройств. Если процесс в аппарате протекает при разрежении, то рабочим давлением является вакуум.

Расчетное давление определяется для рабочих условий и для условий испытаний.

Под расчетным давлением в рабочих условиях для элементов сосудов и аппаратов следует понимать давление, на которое производится расчет на прочность. Как правило, расчетное давление принимают равным рабочему давлению или выше. Расчетное давление может быть выше рабочего в следующих случаях: если во время действия предохранительных устройств давление в аппарате может повыситься более чем на 10% от рабочего, то расчетное давление должно быть равно 90% давления в аппарате при полном открытии предохранительного устройства; если на элемент действует гидростатическое давление от столба жидкости в аппарате, значение которого свыше 5% расчетного, то расчетное давление для этого элемента соответственно повышается на значение гидростатического давления.

Т.о. для рабочих условий расчетное давление

где рраб – рабочее давление в аппарате, МПа;

- гидростатическое давление среды, МПа, которое рассчитывается по формулегде- плотность среды, кг/м3 (значения плотности для некоторых жидкостей приведены в приложении И);

g – ускорение свободного падения, м/с2;h – высота рабочей жидкости, м, которая определяется видом технологического процесса а в аппарате.

Для массообменных колонн в системе жидкость –газ (пар) высоту рабочей жидкости можно принять равной где– высота кубовой части аппарата;

НДН – высота днища аппарата, м, которая определяется в зависимости от типа днища.

Под расчетным давлением в условиях испытаний для элементов сосудов и аппаратов следует понимать давление, которому оно подвергается во время пробного давления, включая гидростатическое давление, если оно составляет 5% или более пробного давления, т.е. расчетное давление для условий испытаний определяется по формуле

, где РПР – пробное давление, МПа, которое рассчитывается по формуле

где Р20Г - гидростатическое давление воды при t=200С, МПа, которое рассчитывается по формуле где- удельный вес воды,МН/м3;Н – высота корпуса (без опоры), заполненная водой, м;[σ]20 – допускаемое напряжение, МПа, при температуре t=20 ºС.

Условное (номинальное) давление ру– избыточное рабочее давление при температуре элемента аппарата 20°С (без учета гидростатического давления).

Для более высоких температур элементов аппарата условное давление снижается соответственно уменьшению прочности конструкционного материала.

Условные давления применяют при стандартизации аппаратов и их узлов.

Это давление всегда не ниже рабочего и расчетного давлений.

При tраб>20°С условное давление снижается пропорционально понижению допускаемых напряжений при этих температурах.

Пробное давление Рпр - под пробным давлением в сосуде и аппарате следует понимать давление, при котором проводится испытание сосуда или аппарата.

Пробное давление гидравлического испытания сосуда должно определяться с учетом минимальных значений расчетного давления и отношения допускаемых напряжений материала сборочных единиц(деталей), т.е. ,отношение сигма20/сигмаt принимается по тому из использованных материалов элементов сосуда, для которого оно является наименьшим.

Определение допускаемого напряжения для материала корпуса аппарата производится для рабочих условий и для условий испытания:

- для рабочих условий при расчетной температуре производится по формуле

[σ]t=η·σ*t,где σ*t – нормативное допускаемое напряжение, МПа,

η – поправочный коэффициент к допускаемым напряжениям. Он должен быть равен единице, за исключением стальных отливок, для которых данный коэффициент имеет следующие значения:

0.8 - для отливок, подвергающихся индивидуальному контролю неразрушающими методами;

0.7 - для остальных отливок.

Таким образом, для сварных аппаратов η = 1.

Для условий испытаний расчетная температура для корпуса колонного аппарата принимается равной 20. Для условий испытания допускаемые напряжения определяются по формулегдеσ20Т–предел текучести при t=20 0С;

nТ – коэффициент запаса по пределу текучести.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]