Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

патент

.docx
Скачиваний:
9
Добавлен:
17.03.2015
Размер:
119.98 Кб
Скачать

www.freepatent.ru

Классы МПК: B03D1/14 .флотационные устройства

C02F1/24 .флотацией

C02F1/74 ..воздухом

C02F7/00 Аэрация водных пространств

B01F3/04 .газов или паров с жидкостями

Автор(ы): Улановский Яков Бенедиктович (RU), Порхачев Виктор Николаевич (RU), Пономарев Виктор Георгиевич (RU), Соколов Сергей Михайлович (MD), Козлова Елена Яковлевна (RU)

Патентообладатель(и): Сайнмет ЛА, Инкорпорейтед (US)

Адрес для переписки: 123242, Москва, Кудринская пл., 1, а/я 35, "Михайлюк, Сороколат и партнеры-патентные поверенные"

Приоритеты: подача заявки:

22.12.2011

начало действия патента:

22.12.2011

публикация патента:

20.10.2013

Изобретение может быть использовано в нефтеперерабатывающей, нефтехимической и нефтедобывающей, пищевой и легкой промышленности, на предприятиях черной и цветной металлургии, машиностроительных заводах. Флотационный аэратор содержит корпус, содержащий перегородку 10 с центральным отверстием, делящую его пространство на верхнюю 2 и нижнюю 3 зоны; ввод воды, расположенный в нижней части нижней зоны 3; воздуховод 7; вывод водовоздушной смеси; электродвигатель 1 с закрепленными на его валу 4 рабочими колесами 5 и 6, размещенными в различных зонах корпуса. Перегородка 10 выполнена в виде диафрагмы. Воздуховод 7 соединен с верхней зоной 2. Вывод водовоздушной смеси выполнен в виде перфорации в боковых стенках нижней зоны 3 корпуса. Рабочее колесо 6, расположенное в нижней зоне 3, выполнено в виде ротора с вертикальными сменными лопатками. Лопатки выполнены перфорированными и/или с зубчатыми краями. Вывод воды в нижнюю зону выполнен с возможностью ее поступления через съемную регулирующую диафрагму 12 с центральным отверстием и насадок 11. Электродвигатель 1 расположен в объеме аэрируемой воды. Изобретение позволяет повысить эффективность приготовления мелкодисперсной водовоздушной смеси, а также повысить надежность работы аэратора. 8 з.п. ф-лы, 2 ил.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Настоящее изобретение относится к флотационным аэраторам и применяется при аэрации природных и других водоемов для обогащения воды кислородом, для аэрации воды в системах водоподготовки и очистки сточных вод, а также в качестве аппарата для диспергации воздуха (газа) при очистке сточных вод методом флотации и может быть использовано в области нефтеперерабатывающей, нефтехимической и нефтедобывающей промышленностей, а также заводов пищевой и легкой промышленности, предприятий черной и цветной металлургии, машиностроительных заводов.

Известен аэратор, содержащий корпус с впускным отверстием для воды, выпускным отверстием для водовоздушной смеси и перегородкой, разделяющей его пространство на верхнюю и нижнюю зоны, причем в перегородке выполнено отверстие для подачи воздуха; воздуховод;

электродвигатель с закрепленными на его валу двумя рабочими колесами (импеллерами), установленными в разных зонах корпуса (патент США № 6655663).

В известном аэраторе ввод воды осуществляется в нижнюю зону корпуса, вывод водовоздушной смеси осуществляется сбоку из верхней зоны, а воздуховод для подачи воздуха введен в отверстие, выполненное в перегородке. Всасывание воздуха происходит за счет эффекта Вентури, возникающего при прохождении потока воды из области высокого давления, создаваемого при вращении первым рабочим колесом, в область низкого давления, создаваемого вторым рабочим колесом.

Известный аэратор имеет ряд недостатков. Так, смешивание воды и воздуха верхним рабочим колесом производится в достаточно большом объеме, а вывод водовоздушной смеси производится сбоку. В верхней части корпуса аэратора имеется область, где накапливается подсасываемый воздух и образуется воздушная подушка. Накопившийся воздух крупными пузырями выходит через боковое отверстие, перекрывая, таким образом, часть его сечения, что приводит как к снижению производительности аппарата, так и эффекта аэрации. Всасывание воздуха в область диспергации производится за счет эффекта Вентури, возникающего при протекании воды через область корпуса, содержащую перегородку, из зоны высокого давления в зону низкого давления. Объем всасываемого воздуха, в этом случае, зависит от разряжения (вакуума), создаваемого потоком воды в области перегородки. Изменять пропорции смешиваемых компонентов (воды и воздуха), в этом случае, не представляется возможным, поскольку все соотношения геометрических размеров аппарата и параметры работы электродвигателя изначально постоянны и не регулируются. Изменение пропорций воды и воздуха при перемешивании влияет не только на насыщение воды воздухом, но и на размер воздушных пузырьков, что немаловажно в процессах очистки воды методом флотации и для повышения эффекта аэрации.

Диспергация воздуха в воде производится в широкой части верхней зоны с большими зазорами между лопатками колеса и стенками, что приводит к образованию пузырьков сравнительно больших диаметров. К другим недостаткам аэратора следует отнести расположение электродвигателя-внутри корпуса в зоне образования воздушной подушки, что может явиться причиной его перегрева.

Задачей настоящего изобретения является повышение эффективности аэрации воды и надежности устройства.

Во флотационном аэраторе, содержащем корпус, содержащий перегородку с центральным отверстием, делящую его пространство на верхнюю и нижнюю зоны; ввод воды, расположенный в нижней части нижней зоны; воздуховод; вывод водовоздушной смеси; электродвигатель с закрепленными на его валу рабочими колесами (импеллерами), размещенными в различных зонах корпуса, согласно изобретению перегородка выполнена в виде диафрагмы с центральным отверстием, воздуховод соединен с верхней зоной, и вывод водовоздушной смеси выполнен в виде перфорации в нижней зоне корпуса. Воздуховод содержит регулирующее устройство для регулирования подачи воздуха, размещенное в его верхней части и над уровнем воды, электродвигатель содержит регулятор числа оборотов вала, а ввод воды содержит регулирующее устройство для регулирования подачи воды, содержащее направляющую диафрагму с центральным отверстием, и насадок, прикрепленный к нижней части нижней зоны. Электродвигатель установлен на верхней поверхности корпуса. Диафрагма выполнена съемной и может иметь разный диаметр центрального отверстия, размер которого устанавливается в зависимости от глубины погружения. Рабочее колесо, расположенное в нижней зоне, выполнено в виде ротора с вертикальными сменными лопатками, имеющими различную конфигурацию. Лопатки рабочего колеса выполнены прямоугольной формы. Лопатки выполнены перфорированными и/или с зубчатыми краями. Перфорация в нижней зоне корпуса выполнена с заданной частотой и диаметром отверстий. Рабочее колесо, расположенное в верхней зоне корпуса, выполнено в виде колеса с винтовыми лопатками. Зазор между внешней кромкой лопасти рабочего колеса и перфорированной стенкой составляет 5-10 мм.

В предлагаемом флотационном аэраторе устранены все конструктивные недостатки известного аэратора и предусмотрена возможность управления процессом получения мелко дисперсной водовоздушной смеси. Так, диспергация воздуха в воде производится в стесненном объеме камеры диспергации, с небольшим зазором между перфорированной лопаткой и перфорированной стенкой камеры, составляющим 5-10 мм. Вывод водовоздушной смеси осуществляется через перфорированные боковые стенки нижней зоны, в которой происходит диспергация, с расчетной перфорацией. Увеличение размеров пузырьков и накопление воздуха в корпусе аппарата, в этом случае, не происходит. Перфорированные и/или зубчатые лопатки рабочего колеса нижней зоны способствуют лучшему перемешиванию воды и воздуха за счет увеличения зон турбулентности в нижней зоне корпуса не только на краях лопаток, но и отверстиях лопаток. Кроме того, выполнение лопаток перфорированными и/или с зубчатыми краями увеличивает турбулизацию среды, что приводит к увеличению количества пузырьков за счет кавитации.

Выполнение вывода водовоздушной смеси через перфорированные боковые стенки нижней зоны, в которой происходит диспергация, способствует равномерному рассредоточенному выпуску водовоздушной смеси в аэрируемый объем воды. Поступление воздуха в верхнюю зону всасывания обеспечивается верхним рабочим колесом через воздуховод с регулирующим устройством, а в нижнюю зону, в которой происходит диспергация (через съемную регулирующую диафрагму), нижним рабочим колесом, создающим разряжение при вращении. Вода в зону диспергации поступает через регулирующее устройство для регулирования подачи воды, содержащее направляющую диафрагму с центральным отверстием, и насадок за счет гидростатического давления и разряжения, создаваемого вторым рабочим колесом при вращении. Таким образом, подача воздуха и воды в нижнюю зону не зависят друг от друга. Регулирующие устройства для регулирования подачи воды и воздуха, а также регулятор числа оборотов вала двигателя позволяют изменять пропорции смешиваемых компонентов независимо друг от друга. Диаметр отверстия съемной регулирующей диафрагмы выбирают в зависимости от глубины погружения аппарата - диаметр отверстия уменьшают, при увеличении глубины погружения флотационного аэратора. Конфигурация сменных лопаток может быть изменена в зависимости от условий работы флотационного аэратора и свойств обрабатываемой жидкости. Насадок обеспечивает выполнение забора воды из нижних слоев, улучшая циркуляцию воды в аэрируемом объеме. Электродвигатель полностью находится в объеме аэрируемой воды в зоне аэрации, что способствует его эффективному охлаждению.

Таким образом, использование вышеперечисленных признаков дает возможность повысить надежность устройства при достижении требуемого эффекта аэрации и очистки воды.

Далее настоящее изобретение поясняется со ссылками на чертежи, где

на фиг.1 изображен флотационный аэратор с расположением верхней поверхности корпуса ниже уровня воды;

на фиг.2 изображен флотационный аэратор с расположением верхней поверхности корпуса выше уровня воды.

Флотационный аэратор содержит корпус; герметичный электродвигатель 1, закрепленный на верхней поверхности корпуса и содержащий вал 4; воздуховод 7; два рабочих колеса 5 и 6, установленные на валу 4 электродвигателя 1; ввод всасываемой воды, и вывод водовоздушной смеси.

Корпус разделен съемной регулирующей диафрагмой 10 на две зоны - верхнюю зону 2, в которой происходит всасывание воздуха, и нижнюю зону 3, в которой происходит диспергация. Внутри корпуса расположен вал 4 электродвигателя с двумя рабочими колесами, при этом рабочее колесо 5, расположенное в верхней зоне 2, выполнено с винтовыми лопатками, а второе рабочее колесо 6 расположено в нижней зоне 3, и выполнено в виде ротора с вертикально расположенными сменными лопатками, имеющими различную конфигурацию, например прямоугольными и перфорированными и/или зубчатыми лопатками. Воздуховод 7 присоединен к верхней зоне 2 и содержит регулирующее устройство 8, расположенное в его верхней части выше уровня воды. Верхняя поверхность корпуса может быть расположена ниже уровня воды (фиг.1). Возможно расположение электродвигателя 1 на верхней поверхности корпуса, находящейся выше уровня воды (фиг.2), в этом варианте высота верхней зоны 2 определяется необходимой глубиной погружения аэратора, а электродвигатель выполнен негерметичным.

Вывод водовоздушной смеси выполнен в виде перфорации в боковых стенках нижней зоны 3, при этом перфорация выполнена с заданным количеством и диаметром отверстий, обеспечивающих образование нужной для флотации мелкодисперсной смеси и ее равномерный и рассредоточенный выпуск. Расстояние между внешними кромками лопаток рабочего колеса 6 и перфорированной стенкой нижней зоны 3 составляет 5-10 мм, в зависимости от конфигурации лопаток. Перфорация произведена с заданным количеством отверстий, имеющими диаметр, составляющий 3-20 мм, причем, чем больше размеры зоны диспергации (диаметр и высота), тем больше диаметр отверстий. Уменьшение или увеличение диаметра отверстий не эффективно для самого процесса диспергирования. Отверстия расположены равномерно в шахматном порядке. Площадь перфорации составляет 20-60% от площади боковых стенок нижней зоны 3, причем выход за границы указанного диапазона приводит к снижению эффективности процесса. Кроме того, перфорация площади боковых стенок свыше 60% снижает прочность корпуса в нижней зоне 2.

Ввод воды выполнен в виде отверстий в нижней части нижней зоны 3, к фланцу которой прикреплен насадок 11, и содержит регулирующее устройство 9, выполняющее регулирование подачи всасываемой воды, и содержащее направляющую диафрагму 12 с центральным отверстием.

Флотационный аэратор работает следующим образом:

При вращении вала электродвигателя воздух (газ) всасывается рабочим колесом 5 в верхнюю зону 2 по воздуховоду 7 через регулирующее устройство 8, расположенное в его верхней части, и далее поступает через регулирующую диафрагму 10 в нижнюю зону 3 к рабочему колесу 6. Вода поступает в нижнюю зону 3 к рабочему колесу б через насадок 11 и регулирующее устройство 9, содержащее направляющую диафрагму 12 с центральным отверстием, и расположенное в нижней части нижней зоны 3. При вращении рабочего колеса б в нижней зоне 3 происходит диспергация воздуха (газа) в воду. Водовоздушная (водогазовая) смесь выходит из нижней зоны 3 через боковые перфорированные стенки. Регулирование качества водовоздушной (водогазовой) смеси, а именно количество и размер пузырьков, осуществляется изменением соотношения воды и воздуха (газа) в смеси при помощи регулирующих устройств 8 и 9, а также изменением числа оборотов электродвигателя. Диаметр отверстия регулирующей диафрагмы 10, находящейся между рабочими колесами 5 и 6, и разделяющей корпус на верхнюю зону 2 и нижнюю зону 3, устанавливается в зависимости от условий работы аэратора, а именно - от глубины его погружения.

Таким образом, предлагаемая конструкция флотационного аэратора позволяет обеспечить повышение эффективности приготовления мелкодисперсной водовоздушной смеси и повышение надежности работы аэратора.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Флотационный аэратор, содержащий корпус, содержащий перегородку с центральным отверстием, делящую его пространство на верхнюю и нижнюю зоны; ввод воды, расположенный в нижней части нижней зоны; воздуховод; вывод водовоздушной смеси; электродвигатель с закрепленными на его валу рабочими колесами, размещенными в различных зонах корпуса, отличающийся тем, что перегородка выполнена в виде диафрагмы с центральным отверстием, воздуховод соединен с верхней зоной, и вывод водовоздушной смеси выполнен в виде перфорации в боковых стенках нижней зоны корпуса; рабочее колесо, расположенное в нижней зоне, выполнено в виде ротора с вертикальными сменными лопатками, выполненными перфорированными и/или с зубчатыми краями; ввод воды в нижнюю зону выполнен с возможностью ее поступления через съемную регулирующую диафрагму с центральным отверстием и насадок; электродвигатель полностью находится в объеме аэрируемой воды.

2. Флотационный аэратор по п.1, отличающийся тем, что воздуховод содержит регулирующее устройство для регулирования подачи воздуха, размещенное в его верхней части и над уровнем воды, электродвигатель содержит регулятор числа оборотов вала, а ввод воды содержит регулирующее устройство для регулирования подачи воды, содержащее направляющую диафрагму с центральным отверстием, и насадок, прикрепленный к нижней части нижней зоны.

3. Флотационный аэратор по п.1, отличающийся тем, что электродвигатель установлен на верхней поверхности корпуса.

4. Флотационный аэратор по п.3, отличающийся тем, что верхняя поверхность расположена ниже уровня воды.

5. Флотационный аэратор по п.1, отличающийся тем, что диафрагма выполнена съемной и может иметь разный диаметр центрального отверстия, размер которого устанавливается в зависимости от глубины погружения.

6. Флотационный аэратор по п.1, отличающийся тем, что лопатки рабочего колеса выполнены прямоугольной формы.

7. Флотационный аэратор по п.1, отличающийся тем, что перфорация в нижней зоне корпуса выполнена с заданной частотой и диаметром отверстий.

8. Флотационный аэратор по п.1, отличающийся тем, что рабочее колесо, расположенное в верхней зоне корпуса, выполнено в виде колеса с винтовыми лопатками.

9. Флотационный аэратор по п.1, отличающийся тем, что зазор между внешней кромкой лопатки рабочего колеса и перфорированной стенкой составляет 5-10 мм.

Классы МПК: C02F1/58 .удалением специфических растворенных соединений

C02F1/28 .сорбцией

C01B25/36 ...фосфаты алюминия 

B01J20/24 ..высокомолекулярные соединения естественного происхождения, например гуминовые кислоты или их производные

C02F101/10 .неорганические соединения

Автор(ы): Мазитов Леонид Асхатович (RU), Финатов Алексей Николаевич (RU), Финатова Ирина Леонидовна (RU), Осмоловская Людмила Павловна (RU)

Патентообладатель(и): Мазитов Леонид Асхатович (RU),

Финатов Алексей Николаевич (RU),

Финатова Ирина Леонидовна (RU)

Адрес для переписки: 141260, Московская обл., Пушкинский р-н, пос. Правдинский, Институтский пр-д, 2, кв.81, Л.А. Мазитову

Приоритеты: подача заявки:

10.04.2012

начало действия патента:

10.04.2012

публикация патента:

20.11.2013

Яндекс.ДиректОчистка сточных вод

Дилер! ЛОС КНС пожарные резервуары Расчет, доставка по РФ, пусконаладка

Адрес и телефон akstok.ru Многоступечатая очистка воды

4-этапное фильтрование BRITA – простой способ быстро очистить воду!

Кувшины для очистки воды·

Картриджи для фильтров·

Контакты

brita.net

Изобретение может быть использовано для очистки стоков от фосфатов в химической, металлургической и нефтехимической промышленности. Для осуществления способа проводят обработку воды сульфатом алюминия с образованием нерастворимых частиц фосфата алюминия и выведение из обработанной воды твердых продуктов очистки. Обработку ведут в присутствии в воде диспергированных целлюлозных волокон, содержащих, в мас.%, не менее 94% волокон с длиной не более 1,23 мм и не менее 54% волокон с длиной не более 0,63 мм. Полученные твердые продукты очистки в виде композиционного материала состоят из этих волокон с прочно сорбированными ими химически осажденными частицами фосфата алюминия. Выведение композиционного материала ведут напорной флотацией. В предпочтительном варианте волокна диспергируют в воде в количестве 40-150 мг/дм3 , при этом композиционный материал выводят из обработанной воды при содержании в нем фосфата алюминия 50-300 мас.ч. на 100 мас.ч. целлюлозных волокон, а часть флотошлама возвращают в процесс очистки. Способ обеспечивает упрощение способа очистки за счет возможности очищать воду с большой объемной скоростью, равной скорости образования осадка, что сокращает длительность процесса очистки. 3 з.п. ф-лы, 4 пр.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Изобретение относится к способам очистки фосфатсодержащих сточных вод и может быть использовано во многих производствах.

Известен способ очистки фосфатсодержащих сточных вод, включающий обработку воды сульфатом магния, нейтрализацию воды в присутствии солей аммония, осаждение фосфатов в виде малорастворимого фосфата магния с последующим отделением осадка (а.с. № 856985, C02F 1/58, опубл. 23.08.81).

Недостатками способа являются большая длительность процесса, его сложность, значительная остаточная концентрация фосфатов в очищенной воде.

Ближайшим аналогом предлагаемого изобретения является способ очистки сточных вод от фосфатов, включающий обработку воды сульфатом алюминия и тетрахлоридом титана при их массовом соотношении (2-5):1 с образованием химическим осаждением нерастворимых частиц фосфорнокислого алюминия и фосфорнокислого титана, выведение из обработанной воды твердых продуктов очистки осаждением, а также фильтрацию осветленной воды (SU, № 1699948, C02F 1/58, опубл. 23.12.91).

Недостатками способа являются большая длительность процесса, сложность обработки осадка, необходимость использования дорогостоящего химиката - тетрахлорида титана.

Новыми результатами от использования предлагаемого изобретения являются упрощение процесса, сокращение его длительности, обеспечение возможности очищать воду с объемной скоростью, равной, например, скорости образования стока.

Указанные результаты достигаются тем, что в способе очистки сточных вод от соединений фосфора, включающем обработку воды сульфатом алюминия с образованием химическим осаждением нерастворимых частиц фосфата алюминия, выведение из обработанной воды твердых продуктов очистки, согласно изобретению, обработку ведут в присутствии в воде диспергированных целлюлозных волокон, содержащих, в мас.%, не менее 94% волокон с длиной не более 1,23 мм и не менее 54% волокон с длиной не более 0,63 мм, с образованием твердых продуктов очистки в виде композиционного материала, состоящего из этих волокон с прочно сорбированными ими химически осажденными частицами фосфата алюминия, а выведение композиционного материала ведут напорной флотацией с образованием флотошлама, при этом волокна диспергируют в воде в количестве 40-150 мг/дм3. Композиционный материал выводят из обработанной воды при содержании в нем фосфата алюминия 50-300 мас.ч. на 100 мас.ч. целлюлозных волокон. Часть флотошлама можно возвращать в процесс очистки, а выводимый из процесса флотошлам утилизировать.

Способ осуществляют следующим образом. Готовят дисперсию целлюлозных волокон (ЦВ), например, с их концентрацией 1%, а также раствор сульфата алюминия с концентрацией, например, 10%. Для приготовления дисперсии используют волокна, содержащие, в мас.%, не менее 94% волокон с длиной не более 1,23 мм и не менее 54% волокон с длиной не более 0,63 мм. Очистку в непрерывном режиме проводят в установке, содержащей смеситель, реактор, сатуратор и флотатор. В проточный смеситель подают сточную воду и дисперсию ЦВ в количестве, обеспечивающем концентрацию волокон в воде в диапазоне 40-150 мг/дм3 . Полученную дисперсию из смесителя подают в проточный реактор, в который подают также раствор сульфата алюминия в количестве, стехиометрически равном содержанию в сточной воде фосфатов. В результате реакции ионов алюминия и фосфата образуются нерастворимые в воде частицы фосфорнокислого алюминия, которые под действием сил стяжения прочно сорбируются целлюлозными волокнами с образованием композиционного материала в виде волокнистой дисперсии.

Целлюлозные волокна в воде без перемешивания в 10-20 сек образуют флоккулы и хлопья. Волокна и эти образования из них хорошо удерживают мелкие пузырьки воздуха и поэтому легко поддаются флотированию. Такими же свойствами обладают волокна с сервированными ими частицами фосфата алюминия. Поэтому для выведения твердых продуктов очистки целесообразно использовать метод флотации, например, напорной флотации.

Дисперсию композиционного материала из реактора направляют в сатуратор, насыщают ее воздухом под давлением, например, 2-3 атм, и подают в водораспределитель в камере флотатора. Давление снижается до нормального, растворенный в воде воздух выделяется в виде мелких пузырьков, которые захватывают быстро образующиеся флоккулы и хлопья и выносят их к поверхности воды в камере флотатора. Образующийся флотошлам отбирают с поверхности воды, например, черпаками, и подают на переработку. Часть флотошлама в некоторых случаях в установившемся режиме очистки возвращают в смеситель.

Флотошлам содержит, в расчете на сухие вещества, от 50 до 300 мас.ч. фосфата алюминия на 100 мас.ч. волокон. Емкость волокон сорбента намного выше 300 мас.ч., на 100 мас.ч. волокон, однако при более высокой величине этого соотношения возникают осложнения при обезвоживании флотошлама вследствие резкого увеличения водоудержания композиционным материалом.

Следующие примеры иллюстрируют возможности предлагаемого способа.

Пример 1. Очищают воду с содержанием фосфора в составе фосфата 6 мг/дм3. Готовят раствор сульфата алюминия с концентрацией 10%. В смесителе в сточной воде диспергируют целлюлозные волокна (ЦВ), содержащие, в мас.%, не менее 94% волокон с длиной не более 1,23 мм и не менее 54% волокон с длиной не более 0,63 мм, при их расходе 40 мг/дм 3. Дисперсию подают в реактор и добавляют в нее сульфат алюминия в количестве, стехиометрически равном содержанию в воде фосфатов (0,87 мас.ч. Al на 1 мас.ч. P). Образующиеся в результате реакции ионов алюминия и фосфата нерастворимые частицы AlPO 4 прочно сорбируются на ЦВ. Композиционный продукт очистки состоит, в расчете на 1 дм3 воды, из 40 мг ЦВ и 23,62 мг AlPO4, или же 59 мас.ч. на 100 мас.ч. ЦВ. Суспензию подают в сатуратор, насыщают ее воздухом при давлении 2 атм и подают во флотатор. Взвешенные вещества флотируются к поверхности воды во флотаторе и накапливаются с образованием слоя флотошлама. Его выводят из флотатора, например, с использованием черпака или переливом. Поскольку полная емкость сорбента значительно выше связанного в этом цикле очистки количества фосфата, в начальный период работы очистной системы весь флотошлам в качестве сорбента равномерно подают в смеситель. В каждом цикле на одной и той же порции ЦВ сорбируются 23,62 мг AlPO4. Полное рециркулирование флотошлама продолжают до достижения соотношения в продукте очистки фосфат алюминия (ФА): целлюлозное волокно, равного, например, в масс.ч, 100:40, или 250:100. С этого момента подачу флотошлама снижают, например, до 30 мг/дм3 воды, и начинают подавать свежий сорбент в количестве, например, 10 мг/дм3. В установившемся режиме остальную часть флотошлама с соотношением 280-300:100 выводят из процесса и направляют на утилизацию.

Пример 2. В отличие от примера 1, очищают воду с содержанием фосфора в составе фосфатов 75 мг/дм3. Целлюлозное волокно расходуют в количестве 100 мг/дм3 . При очистке образуются ~395 мг продуктов в виде композиционного материала при соотношении в нем ФА:ЦВ=295:100. Флотошлам выводят из процесса и направляют на утилизацию.

Пример 3. В отличие от примера 1, очищают воду с содержанием фосфора 60 мг/дм3. Целлюлозное волокно расходуют в количестве 150 мг/дм3. При очистке образуются 236 мг продуктов при соотношении ФА:ЦВ=157:100 (в мас.ч.) Флотошлам полностью выводят из процесса и направляют на утилизацию.

Пример 4. В отличие от примера 1, подлежащая очистке вода содержит фосфор в составе фосфата в количестве 300 мг/дм3. Воду разбавляют до содержания фосфора 60 мг/дм3 и разбавленную воду очищают в условиях, аналогичных использованным в примере 3, с получением аналогичных результатов. В установившемся режиме для разбавления исходной воды используют очищенную воду.

Во всех примерах в очищенной воде фосфаты не обнаруживаются. Выводимый из процесса флотошлам промывают и используют в качестве наполнителя в производстве бумаги.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ очистки сточных вод от фосфатов, включающий обработку воды сульфатом алюминия с образованием химическим осаждением нерастворимых частиц фосфата алюминия, выведение из обработанной воды твердых продуктов очистки, отличающийся тем, что обработку ведут в присутствии в воде диспергированных целлюлозных волокон, содержащих, в мас.%, не менее 94% волокон с длиной не более 1,23 мм и не менее 54% волокон с длиной не более 0,63 мм, с образованием твердых продуктов очистки в виде композиционного материала, состоящего из этих волокон с прочно сорбированными ими химически осажденными частицами фосфата алюминия, а выведение композиционного материала ведут напорной флотацией.