Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 5_2. Мобильные системы.doc
Скачиваний:
99
Добавлен:
18.03.2015
Размер:
2.14 Mб
Скачать

Страница 48 из 48Мобильные системы

История радио и мобильной связи

Генрих Герц в 1888 году открыл способ создания и обнаружения электромагнитных радиоволн. В 1895 году 25 апреля русский учёный Александр Степанович Попов сделал доклад, посвящённый методу использования излученных электромагнитных волн для беспроводной передачи электрических сигналов, содержащих информацию. В марте 1896 года А.С. Попов провёл эксперимент, в котором на 250 метров передал радиограмму с двумя словами «Генрих Герц».

Через несколько лет, в Кронштадте под руководством учёного был налажен выпуск принимающей и передающей аппаратуры. Предприимчивый итальянец Гульельмо Маркони заинтересовался новым изобретением, подал патент в Англии и создал подобное устройство, чуть усложнив схемы А.С. Попова. Впоследствии, для военных нужд в Англии была организована компания «Маркони».

История беспроводной связи начинается в далёком 1901 году. В июле того года, английской компании «Маркони» удалось передать сигналы из станции Польдю в Англии в станцию Сент-Джонс в Ньюфаунленде. Сама компания была в начале двадцатого века единственной, кто осуществлял проводную междугороднюю и международную связь. Сигналы ежедневно передавались по кабелям, проложенными между США и Европой.

Но, вернёмся в Россию - в 1912 году под опекой правительства было образовано Русско-английское радиотелеграфное общество при сотрудничестве «Маркони», которая брала на себя обязательство устанавливать мощные ретрансляторные вышки на территории России. Через станции, установленные в Москве, Одессе, Петербурге и Варшаве проходило до двадцати тысяч слов в сутки.

Первой из самых мощных радиотелеграфных станций в начале прошлого века была точка в Северной Ирландии, её мощность составляла 500 кВт. Следующей стала станция в Кольтано, Италия, обеспечивающая соединения с США, Англией, Испанией и некоторыми колониями в Африке. Мощность итальянского чуда составляла одну тысячу кВт.

Английский магнат связи «Маркони» развернулся также в Египте, Южной Африке, Индии, Сингапуре, Испании, Чили, Греции, Дании, Бразилии, Турции и т.д. Беспроводная связь устанавливалась на частные яхты, торговые и военные суда – всего к прообразу сотовой связи было подключено больше четырехсот портов. В Англии весь военный флот был оснащён радиосвязью. Интересно отметить, что в Испании тогдашний король Альфонс лично открыл беспроводную вышку, связавшую полуостров с Болеварскими и Канарскими островами.

Стоимость переговоров между Лондоном и Нью-Йорком составляла 7,5 пенсов за пять минут. Спрос же на радиосвязь рос постоянно. Например, в Канаде и Бразилии, существовали газеты, получавшие информацию (о погоде и др.) целиком и полностью только за счёт беспроводной связи «Маркони». С помощью новой связи также стали передавать корреспонденцию, клиентам приходилось платить за каждое отправленное слово.

В 1921 году полиция города Детройта, США, получила возможность использовать мобильную связь в автомобилях. Использовались частоты в диапазоне около 2 МГц, связь была ненадёжной и постоянно возникали помехи.

Но, это лишь предпосылки. Настоящая история сотовой связи начинается в 1946 году в городе Сант-Луинс, США. Напомним, что сотовый телефон является дуплексной радиостанцией, ведущей обмен на разных частотах. В наличии принимающая часть и передающая, обеспечивающие связь с базовой станцией (БС) или ретранслятором. Канал БС-телефон называется downlink, а телефон-БС – uplink.

Компания AT&T Bell Laboratories создала радиотелефоны, устанавливающиеся в автомобилях. Стоит ли говорить, что вся аппаратура в начале была громоздкой и тяжёлой. Переключение абонента между каналами связи, в поисках свободного, осуществлялось вручную. Радиопередатчик позволял пассажирам или водителю связаться с АТС и таким образом совершить звонок. Надо упомянуть, что само телефонное общение было сложным – нельзя было и слушать и говорить одновременно. Так, чтобы донести своё сообщение до собеседника, нужно было нажать и удерживать кнопку телефонной трубки, а чтобы услышать ответ, кнопку надо было отпустить (зато, таким образом можно говорить сколько угодно, и знать, что вас никто не сможет перебить). Чтобы позвонить на радиотелефон, приходилось сначала звонить на телефонную станцию и затем сообщать номер оператору. Всего такая «первобытная» система связи поддерживала 23 пользователя одновременно и предназначалась для бизнесменов, переезжающих из Нью-Йорка в Бостон.

Вес аппарата-первооткрывателя сотовой связи составлял 30 кг и для работы он требовал подключения к электросети, поэтому становится ясно, почему первые в мире «мобильники» устанавливались в машинах. Но, инновационная идея Bell Laboratories с треском провалилась – слишком уж дорого выходило пользование услугами мобильной связи. Впрочем, зерно было посеяно. Для связи обычно выделяется диапазон с фиксированными частотными каналами. Если в одно время используются близкие по частоте каналы связи, то общаться с помощью телефонов практически невозможно. В это же время компания разработала систему ячеек или сот (cell – откуда и пошло сегодняшнее название сотовых телефонов).

Принцип действия сот прост. Ранее для общения выделялось всего несколько каналов, и пользователи могли создавать друг для друга не только помехи, но и прослушивать телефонные разговоры. Теперь же проезжающая машина, попадая в другую соту, могла использовать любую частоту, без опаски наткнуться на занятый эфир. То есть, чем больше ячеек, тем меньше помех и тем больше абонентов могут использовать сотовую связью.

Немного отвлечёмся от Америки и вспомним об СССР. У нас первая полностью автоматическая дуплексная система профессиональной мобильной радиосвязи с подвижными объектами под названием «Алтай» заработала в конце 1950 годов. В течение долгого времени «Алтай» был единственным средством мобильным связи в стране.

Как мы уже сказали, идея Bell Laboratories оказалось неудачной. Сервис для бизнесменов проработал с горем пополам пять лет и остановился. С этого момента интерес к радиотелефонной мобильной связи практически пропал. Наученные горьким опытом Bell Laboratories конкуренты не рвались за кажущимися вдалеке золотыми горами. В ряде городов США появлялись небольшие радиотелефонные сети, однако заметных прибылей они не приносили. Ещё одной из причин торможения была Федеральная Комиссия по Коммуникациям (Federal Communications Commissions (FСС), которой потребовался 21 год, чтобы официально разрешить широкомасштабное использование сотовых телефонов гражданскими лицами.

Всё началось в 1954 году, когда инженер Мартин Купер (Martin Cooper) пришёл в компанию Motorola, известную в то время как производитель радиоаппаратуры. Парень получил должность инженера и работал вполне успешно, получив через несколько лет повышение – Купер стал главой отдела по разработке портативных устройств. В 1967 году были созданы первые портативные рации, которые и дали толчок к созданию мобильного телефона.

Параллельно с Motorola, Bell также разрабатывала систему мобильной связи, однако, удача ей не улыбнулась. Всего Motorola затратила 15 лет и $ 100 миллионов на создание первой мобильной сети. Чтобы получить разрешение на использование радиочастот у FCC, необходимо было убедить комиссию в том, что мобильная связь действительно имеет будущее. Весной 1973, 3 апреля, сотрудники Motorola на вершине 50-этажного здания в Нью-Йорке установили первую базовую станцию. Станция могла одновременно поддерживать тридцать пользователей и предоставлять им доступ к городской телефонной сети.

Мартин Купер, под руководством которого и создавался этот проект, самолично сделал первый в мире звонок с мобильного телефона. Причём, он позвонил главе исследовательского отдела конкурентной Bell Laboratories, Джоэлю Энгелю. Общение конкурентов, несмотря на детскую выходку Купера, прошло вполне политкорректно, и Энгель поздравил Motorola с триумфом.

С этого времени Motorola становится первой в мире на рынке сотовых телефонов. Своё первенство компания удерживала немало времени. Телефон, с которого звонил Мартин, назывался Dyna-Tac. Его размеры были 225х125х375 мм, а вес составлял немного нимало 1,15 кг, что, впрочем, намного меньше 30 кг устройств конца сороковых. С помощью аппарата можно было звонить и принимать сигнал, в наличии было 12 клавиш, из которых 10 были цифровых, а две другие начали разговор и прерывали звонок. Аккумуляторы Dyna-Tac позволяли работать в режиме разговора около получаса, а их зарядка требовала 10 часов.

Интересно отметить факт, оказавший влияние на всю историю сотовой связи. Одновременно с Motorola, Bell также хотела убедить FCC зарезервировать им радиочастоты. AT&T в то время продвигала ту же идею, что и в 1947 – телефонную связь в автомобилях. Правда, новые устройства весили 14 кг. Компания заявила комиссии, что через год количество машин, оснащённых сотовыми телефонами, составит 50,000, а в 2000 году и подавно – 900,000 (сегодня мобильники используют больше 2 миллиардов). Самое главное, что Bell сообщила FCC: «сотовые телефоны не имеют будущего, в то время как связь в автомобилях используется уже сегодня». Motorola необходимо было поторапливаться, и она в течении 90 дней смогла совершить первый в мире звонок с мобильного телефона.

А теперь перенесёмся на несколько лет вперёд и расскажем о том, что принесло Motorola успех. Конечно, кажется удивительным, что FCC одобрила использование частот для Motorola (Dyna-Tac использовался официально), ведь чиновники, даже в США, обычно медлительны и очень скептически настроены ко всему новому. А дело бы так…

В начале 80-х основатель Motorola, Пол Галвин, имел прямой контакт с вице-президентом Джорджем Бушем. Пол связался с Бушем и попросил его устроить для семилетней внучки экскурсию по Белому Дому. Буш согласился, и пригласил Пола и его внучку в правительство. Как только экскурсия подошла к концу, Пол задал следующий вопрос: «Почему бы тебе (Буш) не позвонить Барбаре?». Буш согласился и взял мобильник из рук Пола, чтобы позвонить своей жене: «Ты знаешь, что я сейчас делаю? – спросил возбуждённый Буш. – Я говорю по мобильному телефону!». Затем Буш запросто спросил Пола: «Рон видел это?». Глава компания сразу же понял, кого имел в виду его друг и ответил отрицательно.

В тот же день Рональд Рейган (президент США) и Пол встретились. Рейган сделал звонок по мобильнику и сразу же взял быка за рога: «Какой статус у этого устройства?». Пол ответил, что Motorola ждёт уже несколько лет одобрения от комиссии, но всё безрезультатно, и намекнул, что если будут тянуть и дальше, то, Япония может стать первой. Услышав ответ, Рейган долго не думал, и дальше было как в кино: президент США связался с помощником и сообщил ему буквально следующее: «Скажи управляющему FCC, что я хочу, чтобы устройство Motorola вышло официально». В итоге, в 1982 FCC признала, что сотовые телефоны безопасны, а в 1983 модель Dyna-Tас была одобрена официально.

С 1974 года FCC начала потихоньку выделять частоты для желающих создать коммерческие сети. Через полгода после Motorola, Bell представила свою версию мобильного телефона. Всего услугами компании в 1978 году пользовались 545 абонентов, и почти четыре тысячи стояли на очереди.

В 1979 году Япония заинтересовалась американской разработкой и начала проводить соответствующие испытания.

В 1982 году FCC официально одобрила технологию сотовой связи. В комиссию пришло более 600 заявок от компаний на получение соответствующих лицензий, причём две трети заявленных использовали оборудование от Motorola. Motorola была выбрана FCC и первой в мире стала выпускать сотовые телефоны. 10 лет потребовалось на то, чтобы мобильники вышли на рынок, для сравнения, микроволновкам для этого потребовалось 19 лет, а компьютерам – 15.

Motorola Dyna-TAC 8000x, представлявший пятое поколение Dyna-TAC, стал первым сотовым компании, попавшим на прилавок. Модель стоила около $ 10,000, однако уже через год её цена составила $ 4,000 – телефоны выходили на масштабный рынок. А в 1991 компания предлагала сотовые «всего» за $ 1,000.

Мобильная связь

Мобильная связь — это радиосвязь между абонентами, местоположение одного или нескольких из которых меняется. Одним из видов мобильной связи является сотовая связь.

Сотовая связь — один из видов радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность: общая зона покрытия делится на соты, определяющиеся зонами покрытия базовых станций. Соты перекрываются и вместе образуют сеть. На идеальной поверхности зона покрытия одной базовой станции представляет собой круг, поэтому составленная из них сеть имеет вид сот с шестиугольными ячейками.

Принцип действия сотовой связи

Итак, для начала рассмотрим, как осуществляется звонок по мобильному телефону. Лишь только пользователь набирает номер, телефонная трубка (HS - Hand Set) начинает поиск ближайшей базовой станции (BS - Base Station) - приемопередающее, управляющее и коммуникационное оборудование, составляющее сеть. В ее состав входят контроллер базовой станции (BSC - Base Station Controller) и несколько ретрансляторов (BTS - Base Transceiver Station). Базовые станции управляются мобильным коммутирующим центром (MSC - Mobile Service Center). Благодаря сотовой структуре, ретрансляторы покрывают местность зоной уверенного приема в одном или нескольких радиоканалах с дополнительным служебным каналом, по которому происходит синхронизация. Точнее происходит согласование протокола обмена аппарата и базовой станции по аналогии с процедурой модемной синхронизации (handshacking), в процессе которого устройства договариваются о скорости передачи, канале и т.д. Когда мобильный аппарат находит базовую станцию и происходит синхронизация, контроллер базовой станции формирует полнодуплексный канал на мобильный коммутирующий центр через фиксированную сеть. Центр передает информацию о мобильном терминале в четыре регистра: посетительский регистр подвижных абонентов или "гостей" (VLR - Visitor Layer Register), "домашний" регистр местных подвижных абонентов (HRL - Home Register Layer), регистр подписчика или аутентификации (AUC - AUthentiCator) и регистр идентификации оборудования (EIR - Equipment Identification Register). Эта информация уникальна и находится в пластиковой абонентской микроэлектронной телекарточке или модуле (SIM - Subscriber Identity Module), по которому производятся проверка правомочности абонента и тарификация. В отличие от стационарных телефонов, за пользование которыми плата взимается в зависимости от нагрузки (числа занятых каналов), поступающей по фиксированной абонентской линии, плата за пользование подвижной связью взимается не с используемого телефонного аппарата, а с SIM-карты, которую можно вставить в любой аппарат.

Карточка представляет собой не что иное, как обычный флэш-чип, выполненный по смарт-технологии (SmartVoltage) и имеющий необходимый внешний интерфейс. Его можно использовать в любых аппаратах, и главное - чтобы совпадало рабочее напряжение: ранние версии использовали 5.5В интерфейс, а у современных карт обычно 3.3В. Информация хранится в стандарте уникального международного идентификатора абонента (IMSI - International Mobile Subscriber Identification), благодаря чему исключается возможность появления "двойников" - даже если код карты будет случайно подобран, система автоматически исключит фальшивый SIM, и не придется в последствии оплачивать чужие разговоры. При разработке стандарта протокола сотовой связи этот момент был изначально учтен, и теперь каждый абонент имеет свой уникальный и единственный в мире идентификационный номер, кодирующийся при передаче 64бит ключом. Кроме этого, по аналогии со скремблерами, предназначенными для шифрования/дешифрования разговора в аналоговой телефонии, в сотовой связи применяется 56бит кодирование.

На основании этих данных формируется представление системы о мобильном пользователе (его местоположение, статус в сети и т. д.) и происходит соединение. Если мобильный пользователь во время разговора перемещается из зоны действия одного ретранслятора в зону действия другого, или даже между зонами действия разных контроллеров, связь не обрывается и не ухудшается, поскольку система автоматически выбирает ту базовую станцию, с которой связь лучше. В зависимости от загруженности каналов телефон выбирает между сетью 900 и 1800 МГц, причем переключение возможно даже во время разговора абсолютно незаметно для говорящего.

Звонок из обычной телефонной сети мобильному пользователю осуществляется в обратной последовательности: сначала определяются местоположение и статус абонента на основании постоянно обновляющихся данных в регистрах, а затем происходят соединение и поддержание связи.

Системы подвижной радиосвязи строятся по схеме "точка-многоточие" (point-multipoint), поскольку абонент может находиться в любой точке соты, контролируемой базовой станцией. В простейшем случае круговой передачи мощность радиосигнала в свободном пространстве теоретически уменьшается обратно пропорционально квадрату расстояния. Однако на практике сигнал затухает гораздо быстрее - в лучшем случае пропорционально кубу расстояния, поскольку энергия сигнала может поглощаться или уменьшаться на различных физических препятствиях, и характер таких процессов сильно зависит от частоты передачи. При уменьшении мощности на порядок охватываемая площадь соты уменьшается на два порядка.

"ФИЗИОЛОГИЯ"

Важнейшими причинами повышенного затухания сигналов являются теневые зоны, создаваемые зданиями или естественными возвышенностями на местности. Исследования условий применения подвижной радиосвязи в городах показали, что даже на очень близких расстояниях теневые зоны дают затухание до 20дБ. Другой важной причиной затухания является листва деревьев. Например, на частоте 836МГц в летнее время, когда деревья покрыты листвой, уровень принимаемого сигнала оказывается приблизительно на 10дБ ниже, чем в том же месте зимой, при отсутствии листьев. Замирания сигналов от теневых зон иногда называют медленными с точки зрения условий их приема в движении при пересечении такой зоны.

Важное явление, которое приходится учитывать при создании сотовых систем подвижной радиосвязи - отражение радиоволн, и, как следствие, их многолучевое распространение. С одной стороны, это явление полезно, так как оно позволяет радиоволнам огибать препятствия и распространяться за зданиями, в подземных гаражах и тоннелях. Но с другой стороны, многолучевое распространение порождает такие трудные для радиосвязи проблемы, как растягивание задержки сигнала, релеевские замирания и усугубление эффекта Доплера.

Растягивание задержки сигнала получается из-за того, что сигнал, проходящий по нескольким независимым путям разной протяженности, принимается несколько раз. Поэтому повторяющийся импульс может выйти за пределы отведенного для него интервала времени и исказить следующий символ. Искажения, возникающие за счет растянутой задержки, называются межсимвольной интерференцией. При небольших расстояниях растянутая задержка не опасна, но если соту окружают горы, задержка может растянуться на многие микросекунды (иногда 50-100 мкс).

Релеевские замирания вызываются случайными фазами, с которыми поступают отраженные сигналы. Если, например, прямой и отраженный сигналы принимаются и противофазе (со сдвигом фазы на 180°), то суммарный сигнал может быть ослаблен почти до нуля. Релеевские замирания для данного передатчика и заданной частоты представляют собой нечто вроде амплитудных "провалов", имеющих разную глубину и распределенных случайным образом. В этом случае при стационарном приемнике избежать замираний можно просто переставив антенну. При движении же транспортного средства такие "провалы" проходятся ежесекундно тысячами, отчего происходящие при этом замирания называются быстрыми.

Эффект Доплера проявляется при движении приемника относительно передатчика и состоит в изменении частоты принимаемого колебания. Подобно тому, как тон шума движущегося поезда или автомобиля кажется неподвижному наблюдателю несколько выше при приближении транспортного средства и несколько ниже при его удалении, частота радиопередачи смещается при движении приемопередатчика. Более того, при многолучевом распространении сигнала отдельные лучи могут давать смещение частоты в ту или другую сторону одновременно. В результате, за счет эффекта Доплера получается случайная частотная модуляция передаваемого сигнала подобно тому, как за счет релеевских замираний происходит случайная амплитудная модуляция. Таким образом, в целом многолучевое распространение создает большие трудности в организации сотовой связи, в особенности для подвижных абонентов, что связано с медленными и быстрыми замираниями амплитуды сигнала в движущемся приемнике. Преодолеть эти трудности удалось с помощью цифровой техники, которая позволила создать новые методы кодирования, модуляции и выравнивания характеристик каналов.

"АНАТОМИЯ"

Передача данных осуществляется по радиоканалам. Сеть GSM работает в диапазонах частот 900 или 1800 МГц. Более конкретно, например, в случае рассмотрения диапазона 900МГц подвижной абонентский аппарат передает на одной из частот, лежащих в диапазоне 890-915 МГц, а принимает на частоте, лежащей в диапазоне 935-960 МГц. Для других частот принцип тот же, изменяются только численные характеристики.

По аналогии со спутниковыми каналами направление передачи от абонентского аппарата к базовой станции называется восходящим (Rise), а направление от базовой станции к абонентскому аппарату - нисходящим (Fall). В дуплексном канале, состоящем из восходящего и нисходящего направлений передачи, для каждого из названных направлений применяются частоты, различающиеся точно на 45МГц. В каждом из указанных выше частотных диапазонов создаются по 124 радиоканала (124 для приема и 124 для передачи данных, разнесенных на 45МГц) шириной по 200кГц каждый. Этим каналам присваиваются номера (N) от 0 до 123. Тогда частоты восходящего (FR) и нисходящего (FF) направлений каждого из каналов можно вычислить по формулам: FR(N) = 890+0.2N (МГц), FF(N) = FR(N) + 45 (МГц).

В распоряжение каждой базовой станции может быть предоставлено от одной до 16 частот, причем число частот и мощность передачи определяются в зависимости от местных условий и нагрузки.

В каждом из частотных каналов, которому присвоен номер (N) и который занимает полосу 200кГц, организуются восемь каналов с временным разделением (временные каналы с номерами от 0 до 7), или восемь канальных интервалов.

Система с разделением частот (FDMA) позволяет получить 8 каналов по 25кГц, которые, в свою очередь, разделяются по принципу системы с разделением времени (TDMA) еще на 8 каналов. В GSM используется GMSK-модуляция, а несущая частота изменяется 217 раз в секунду для того, чтобы компенсировать возможное ухудшение качества.

Когда абонент получает канал, ему выделяется не только частотный канал, но и один из конкретных канальных интервалов, и он должен вести передачу в строго отведенном временном интервале, не выходя за его пределы - иначе будут создаваться помехи в других каналах. В соответствии с вышеизложенным работа передатчика происходит в виде отдельных импульсов, которые происходят в строго отведенном канальном интервале: продолжительность канального интервала составляет 577мкс, а всего цикла - 4616мкс. Выделение абоненту только одного из восьми канальных интервалов позволяет разделить во времени процесс передачи и приема путем сдвига канальных интервалов, выделяемых передатчикам подвижного аппарата и базовой станции. Базовая станция (BS) всегда передает на три канальных интервала раньше подвижного аппарата (HS).

Требования к характеристикам стандартного импульса описываются в виде нормативного шаблона изменения мощности излучения во времени. Процессы включения и выключения импульса, которые сопровождаются изменением мощности на 70дБ, должны укладываться в промежуток времени длительностью всего 28мкс, а рабочее время, в течение которого передаются 147 двоичных разрядов, составляет 542.8мкс. Значения мощности передачи, указанные в таблице ранее, относятся именно к мощности импульса. Средняя же мощность передатчика оказывается в восемь раз меньше, так как 7/8 времени передатчик не излучает.

Рассмотрим формат нормального стандартного импульса. Из него видно, что не все разряды несут полезную информацию: здесь в середине импульса располагается обучающая последовательность из 26 двоичных разрядов для защиты сигнала от помех многолучевого распространения. Это - одна из восьми специальных легко распознаваемых последовательностей, по которой принятые разряды правильно располагаются во времени. Такая последовательность ограждается одноразрядными указателями (PB - Point Bit), а с обеих сторон этой настроечной последовательности располагается полезная кодированная информация в виде двух блоков по 57 двоичных разрядов, ограждаемых, в свою очередь, граничными разрядами (BB - Border Bit) - по 3бит с каждой стороны. Таким образом, импульс переносит 148бит данных, которые занимают 546.12мкс временной интервал. К этому времени добавляется еще промежуток, равный 30.44мкс защитного времени (ST - Shield Time), в течение которого передатчик "молчит". По продолжительности этот промежуток соответствует времени передачи 8.25 разряда, но передачи в это время не происходит.

Последовательность импульсов образует физический канал передачи, который характеризуется номером частоты и номером временного канального интервала. На основе этой последовательности импульсов организуется целая серия логических каналов, которые различаются своими функциями. Кроме каналов, передающих полезную информацию, существует еще ряд каналов, передающих сигналы управления. Реализация таких каналов и их работа требуют четкого управления, которое реализуется программными средствами.