Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
111801.65 С-ВТлекции по Биологической физике.doc
Скачиваний:
126
Добавлен:
25.03.2015
Размер:
2.75 Mб
Скачать

5.5. Исследование биологических тканей в поляризованном свете

Рассматривая прозрачные биологические объекты в микроскопе, трудно выявить различные структуры, поэтому приходится применять некоторые специальные методики; в их числе поляризационная микроскопия.

Поляризационный микроскоп аналогичен обычному, но имеет поляризатор перед конденсатором и анализатор в тубусе между объективом и окуляром. Предметный столик вращается вокруг оптической оси микроскопа. Таким образом, объект освещают поляризованными лучами и рассматривают через анализатор.

Если скрестить поляризатор и анализатор, то поле зрения остается темным, таким же оно останется при помещении на предметный столик изотропных прозрачных тел. Анизотропные предметы изменяют поле зрения в соответствии с тем, что они оказывают влияние на плоскость поляризации.

Так как некоторые ткани (мышечная, костная, нервная) обладают оптической анизотропией, то возможна поляризационная микроскопия биологических объектов. При скрещенных поляризаторе и анализаторе будут видны только те волокна, анизотропия которых изменяет поляризованный свет.

Поляризованный свет можно использовать в модельных условиях, для оценки механических напряжений возникающих в костных тканях. Этот метод основан на явлении фотоупругости, которое заключается в возникновении оптической анизотропии в первоначально изотропных твердых телах под действием механических нагрузок.

Рисунок 27.

Из прозрачного изотропного материала, например плексигласа, создают плоскую модель кости. В скрещенных поляроидах эта модель незаметна. Прикладывая нагрузку, вызывают анизотропию плексигласа, что становится заметным по характерной картине полос и пятен (рис. 27). По этой картине, а также по ее изменению при увеличении и уменьшении нагрузки можно делать выводы о механических напряжениях, возникающих в модели, а следовательно, и в натуре.

5.6. Оптическая система глаза

Глаз является сложной оптической системой находящейся в белковой оболочке 1 (рис.28).

Рисунок 28.

С ней соприкасается сосудистая оболочка 2, к которой прилегает сетчатая оболочка 3 (сетчатка), состоящая из мельчайших светочувствительный элементов (размеры порядка 10 мкм) являющихся окончаниями нервных волокон зрительного нерва 4 идущего к головному мозгу. В передней части белковая оболочка переходит в роговую (роговица) 5, а сосудистая – в радужную 6 со зрачком. Позади зрачка расположен хрусталик 7 – прозрачная упругая двояковыпуклая линза. Полость белковой оболочки заполнена прозрачной жидкостью с показателем преломления n=1,33 (у роговицы nр=1,38, у хрусталика в среднем n=1,44).

Изображение проецируется на сетчатку. Оно действительное, уменьшенное и перевернутое. Корректируется головным мозгом для правильного восприятия.

Зрачок играет роль диафрагмы и регулирует количество света, попадающего в глаз, а кривизна поверхностей хрусталика изменяется с помощью ресничной мышцы, обеспечивая резкое изображение на сетчатке предметов, находящихся на различных расстояниях от глаза (аккомодация).

При расслабленной ресничной мышце хорошо видны предметы, распложенные далее 8 метров, а вследствие аккомодации отчетливо видны предметы, находящиеся на расстоянии большем расстояния ясного зрения (25см).

Размер получаемого изображения зависит от угла зрения α между лучами, попадающими в глаз от крайних точек предмета, который может быть не менее 1 угловой минуты, и называется предельным углом зрения.

Поэтому невооруженным глазом нельзя четко рассмотреть как крупные, но далеко расположенные предметы, так и близко распложенные, но мелкие. Для увеличения угла зрения применяют телескопы и микроскопы.

Наиболее распространенными дефектами глаза являются близорукость (изображение перед сетчаткой) и дальнозоркость (за сетчаткой). Эти дефекты исправляются соответственно с помощью рассеивающих или собирающих линз.

Светочувствительные элементы сетчатки подразделяются на палочки и колбочки. Палочки более чувствительны, но не реагируют на цвет, а колбочки обладают спектральной чувствительностью, однако в узком интервале длины волны – 0,77-0,38 мкм (видимый свет), причем наибольшая чувствительность приходится на длину волны, соответствующую зеленому свету – 0,555 мкм.

Мерой спектральной чувствительности глаза является коэффициент видности излучения с длиной волны λ, характеризующийся отношением мощности монохроматического излучения с длиной волны λмакс=0,55 мкм к мощности монохроматического излучения, с длиной волны λ, вызывающего такое же ощущение, как и излучение с диной волны λмакс.

Так, например, для красного света Uλ=5*10-5.

Свет снижает чувствительность глаза, но в темноте она значительна и составляет 10-17 Дж, что соответствует свету, испускаемому свечой, находящейся на расстоянии 100 км в прозрачной атмосфере.

У многих насекомых максимальная чувствительность зрения в области ультрафиолетовой части спектра, а зрение большинства птиц наиболее чувствительно к красному цвету.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]