Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экология / часть_1.doc
Скачиваний:
46
Добавлен:
26.03.2015
Размер:
866.3 Кб
Скачать
  • 2.6.2 Сжигание топлива по специальной технологии.

Традиционные энерготехнологические установки основаны на высокотемпературном (обычно около 1200°С) факельном сжигании топлив и являются одним из основных источников загрязнения атмосферы теплом и вредными веществами. Системам с простым факельным сжиганием топлива свойственны следующие недостатки:

- большие выбросы вредных продуктов (NOx , SO2 ,CO, бенз(а)пиренов);

- большие габариты систем, из-за низких коэффициентов теплоотдачи от горячих дымовых газов к теплообменным поверхностям и, как следствие, высокие капзатраты;

- дорогие конструкционные материалы (требования жаростойкости и долговечности);

- взрывопожароопасность и др.

Повысить эффективность горения и снизить загрязнение атмосферы позволяет применение сравнительно низкотемпературных (900-1000°С) топок с применением технологии «кипящего слоя» (псевдоожижения). Сжигание топлива можно осуществить также с предварительной его газификацией.

Для уменьшения мощности выброса серы твердое, порошкообразное или жидкое топливо сжигают в кипящем слое, который формируется из твердых частиц золы, песка или других веществ (инертных или реакционноспособных). Твердые частицы вдуваются в проходящие газы, где они завихряются, интенсивно перемешиваются и образуют принудительно равновесный поток, который в целом обладает свойствами жидкости (эффект псевдоожижения).

Предварительной газификации подвергаются уголь и нефтяные топлива, однако на практике чаще всего применяют газификацию угля. Поскольку в энергетических установках получаемый и отходящий газы могут быть эффективно очищены, то концентрации диоксида серы и твердых частиц в их выбросах будут минимальными.

На практике, как правило, целесообразно сочетать несколько принципов при создании энергосберегающих и экологичных технологий. В качестве примера рассмотрим технологию, с использованием беспламенного каталитического горения, позволяющую избежать многих недостатков, свойственных системам с простым факельным сжиганием топлива

В основу рассматриваемой ниже технологии сжигания топлив в присутствии катализаторов заложено сочетание четырёх принципов:

  1. применение катализаторов полного окисления веществ;

  2. сжигание топлив в псевдоожиженном (кипящем) слое частиц катализатора;

  3. сжигание смесей топлива и воздуха при соотношении, близком к стехиометрическому;

  4. совмещение тепловыделения и теплоотвода в едином псевдоожиженном слое.

В генераторах тепла каталитических (ГТК) окисление топлива происходит на поверхности гранул специальных оксидных катализаторов, поддерживаемых в псевдоожиженном состоянии в потоке топлива, воздуха и продуктов горения. Отвод тепла из слоя производится через теплообменные поверхности, находящиеся в кипящем слое, путем прямого контакта катализатора с рабочим телом.

Каталитическое сжигание принципиально отличается от горения в традиционном понимании, так как топливо окисляется на поверхности твердых катализаторов без образования пламени вообще. Действие катализаторов в процессе полного окисления (или гетерогенного «горения») топливно-воздушных смесей схематически можно представить как химическое взаимодействие компонентов топлива с поверхностным кислородом катализатора с последующей регенерацией восстановленной поверхности катализатора кислородом газовой фазы. В зависимости от активности катализатора, которая определяется энергией связи поверхностного кислорода с активным компонентом катализатора, процесс полного окисления многих веществ может протекать при температурах 300-700°С. Таким образом, присутствие в реакционной системе катализатора снижает температуру сжигания органического топлива с 1000-1200°С до 300-700°С, сохраняя при этом высокие скорости горения и обеспечивая полное сгорание топливно-воздушных смесей даже без избытка воздуха.

В псевдоожиженном состоянии гранулы катализатора являются одновременно и твердым теплоносителем, обеспечивая высокие коэффициенты теплоотдачи к поверхности теплообменника. По сравнению с традиционными способами сжигания, наличие катализатора позволяет ослабить требования к термохимическим свойствам конструкционных материалов аппаратов, уменьшить потери теплоты через стенки аппаратов, облегчить запуск системы в работу и управление процессом, а также исключить протекание вторичных эндотермических реакций с образованием токсичных продуктов. Использование катализатора также позволяет снизить взрывоопасность устройств, так как топливо и воздух подаются в псевдоожиженный слой раздельно, и, кроме того, достичь высоких значений теплонапряженности объема топочного пространства и, следовательно, значительно снизить габариты, вес и металлоемкость конструкций.

Особенностью рассматриваемого ГТК является наличие в слое горизонтальной секционирующей решетки, которая тормозит свободную циркуляцию катализатора и разделяет псевдоожиженный слой на две зоны - нижнюю с температурой 600-750°С достаточной для полного окисления топлива, и верхнюю, температура которой может быть понижена до 200-З00°С за счет дополнительного отвода тепла (рис. 2.1). Это минимизирует потери теплоты с отходящими газами и позволяет проводить эффективно при контролируемой температуре различные технологические процессы, такие как, нагрев, сушку и термообработку различных порошковых материалов.

Очевидно, что для процессов сжигания в псевдоожиженном слое наиболее важным вопросом является выбор катализатора и его носителя. Специфика катализаторов, применяемых в ГТК, заключается в том, что при работе они подвергаются одновременному химическому, термическому и механическому воздействию. Применяемые в ГТК данного типа катализаторы полного окисления на алюмооксидных сферических носителях имеют, например, следующие характеристики: удельная поверхность 150-200 м2/г, средний радиус пор 40-50 Ǻ, прочность на раздавливание - 25 МПа.

Рис. 2.1. Схема ГТК и профиль температур по высоте слоя катализатора

Использование ГТК позволяет исключить образование продуктов недожога: сажи (дисперсный углерод C) и канцерогенных углеводородов (CnHn), и значительно снизить выбросы СО и NOX. Сравнение концентраций NOX при факельном сжигании и сжигании в псевдоожиженном слое катализатора показало, что сжигание топлив в ГТК приводит к резкому снижению образования как термических, так и топливных NOX.

Соседние файлы в папке Экология