Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ext_5251

.pdf
Скачиваний:
31
Добавлен:
27.03.2015
Размер:
6.26 Mб
Скачать

ГЛАВА 6. Биотехнологии и наномедицина

методах изменения непредсказуемы и обычно затрагивают многие гены.

Генноинженерные методы позволяют создавать новые генотипы и, следовательно, новые формы растений гораздо быстрее, чем классические методы селекции. Кроме того, появляется возможность целенаправленного изменения генотипа.

Генная инженерия позволяет вводить в растения гены ус тойчивости к различным стрессовым факторам, фитопатоге нам, гербицидам и пестицидам, гены скороспелости, фиксации азота и др. Возможно также и улучшение аминокислотного сос тава белков растений.

Наибольший урон растениям наносят грибные, бактериаль ные и вирусные инфекции. В природе растения обладают за щитными механизмами, которые начинают действовать в ответ на проникновение фитопатогенов в клетку. Во первых, начина ется синтез веществ, убивающих патогены. Во вторых, создают ся барьеры, препятствующие распространению инфекции.

Применение методов генной инженерии, использующих естественные защитные механизмы, позволяет получать транс генные растения, устойчивые к грибной, бактериальной и ви русной инфекции. В частности, были получены трансгенные культуры табака и турнепса, в состав генома которых ввели ген хитиназы, а также томаты с геном защитных пептидов редьки, отвечающих за устойчивость к фитопатогенным грибам.

Другой подход к получению растений, устойчивых к вирус ной инфекции, состоит во введении в геном исходных растений генов, кодирующих белок оболочки вируса. Это приводит к блокировке размножения вируса и снижению инфицирован ности. Благодаря такому подходу был получен стойкий антиви русный эффект у табака, модифицированного геном оболочки вируса табачной мозаики.

Интересный эффект дало введение в геном растений гена человеческого интерферона JFN – одного из ключевых белков нашего иммунитета. Ген этого интерферона был введен в расте ния турнепса, табака, картофеля, что повысило устойчивость этих растений к вирусным заболеваниям.

www.nanonewsnet.ru

303

НАНОТЕХНОЛОГИИ ДЛЯ ВСЕХ

Создание трансгенных растений, устойчивых к насекомым,

спомощью методов генной инженерии стало возможным пос ле того, как было обнаружено, что почвенные бактерии Bacillus thurengiensis синтезируют специфический белок, токсичный для насекомых. Ген, ответственный за его синтез, удалось выделить и ввести в геном многих видов сельскохозяйственных растений. Для человека и животных этот белок безопасен, и даже на насе комых разные его варианты действуют по разному. Различные модификации Bt токсина могут быть ядовитыми только для жуков, или только для бабочек определенного отряда, и т. д.

Вприроде растения приспосабливаются к неблагоприят ным условиям среды различными способами. Во первых, это физиологические механизмы, позволяющие растениям избе жать неблагоприятных воздействий (например, опадание лист вы осенью при снижении температуры). Во вторых, адаптация

спомощью морфологических приспособлений: толстый слой кутикулы на листьях, уменьшение листовой поверхности (про рези), ее опушение, которые предотвращают излишнюю поте рю влаги растениями. В третьих, негативное влияние внешней среды может быть преодолено с помощью изменений метабо лизма. Например, при засухе или чрезмерной концентрации солей в почве и воде у высших растений основным защитным механизмом, связанным с изменением метаболизма, является накопление в клетках осмопротекторов.

Именно этот адаптационный механизм наиболее доступен для генноинженерных исследований. Эксперимент показал, что стрессовый ответ на избыток солей или недостаток влаги у бак терий и высших растений выражается сходно: и те, и другие на чинают усиленно синтезировать белки осмопротекторы для вос становления осмотического баланса между цитоплазмой и окру жающей средой. Поэтому для создания устойчивых к засухе и за солению растений в их геном были введены соответствующие бактериальные гены. Полученные трансгенные растения могли расти в засушливой почве при концентрации соли в среде 20 г/л.

Адаптация к низким температурам сопряжена у бактерий и высших растений с накоплением веществ, понижающих осмо тический потенциал клеток и уменьшающих вероятность обра зования крупных кристаллов льда, способных вызвать их ги бель просто из за разрушения клеточной оболочки. Вот почему

304

ГЛАВА 6. Биотехнологии и наномедицина

случайные заморозки способны уничтожить большинство сельскохозяйственных культур.

Чтобы не допустить образования льда в клетках, уже давно применяется заражение растений мутантным штаммом бакте рии Pseudomonas syringae. Полученные таким образом растения легко переносят заморозки вплоть до –8°С.

Однако оказалось, что бактерии мутантного штамма более живучи и могут вытеснить природный штамм этих бактерий, который, попадая в верхние слои атмосферы, способствует кристаллизации атмосферной влаги. Вероятно, вытеснение природного штамма могло бы привести к изменению климата и экологической катастрофе.

ГМ–продукты: за и против

Поскольку с открытием метода генной инженерии челове чество приблизилось к небывалой возможности создавать но вые виды растений и животных, то естественно, что у биотехно логий, как у любого развивающегося научного направления, появились не только свои защитники, но и враги, в т. ч. и в сре де ученых.

Первые убедительно доказывают, что ГМ растения не толь ко безвредны, но и полезны. Такие растения обладают повы шенным содержанием питательных веществ (в особенности белка), необычной стойкостью ко многим видам заболеваний и вредителей и губительным факторам окружающей среды. Все это позволяет, во первых, значительно повысить урожайность, не привлекая для этого дополнительные гектары земли. Проб лема перенаселения планеты – тема отдельного разговора. С годами численность людей на планете только увеличивается, а ведь кушать хочется каждому! Во вторых, использование ГМ растений позволяет резко снизить необходимость внесения токсичных химических инсектицидов и гербицидов, что в свою очередь значительно снизит уровень загрязнения сточных вод, отравляющих и живую природу, и людей.

В связи с этим существует мнение, что протесты против ГИ организуются и поддерживаются производителями удобрений и ядохимикатов, которым широкое использование ГМ расте ний грозит убытками. В пользу такого мнения выступили 15 тысяч ученых (в т. ч. 20 нобелевских лауреатов), поставивших

www.nanonewsnet.ru

305

НАНОТЕХНОЛОГИИ ДЛЯ ВСЕХ

свою подпись под утверждением, что ГМ растения безвредны для здоровья.

Вчастности, по словам Константина Скрябина – академи ка Российской академии сельскохозяйственных наук, «за всю 30 летнюю историю развития биотехнологии не зарегистриро вано ни одного случая, доказывающего, что ГМ продукты опасны для здоровья. Простой пример: США являются безус ловным лидером по производству и потреблению ГМ продук тов. При этом в стране, где любимым способом внезапного обогащения являются суды по любому поводу, не было подано ни одного иска к компаниям, производящим ГМО. Мы не раз объявляли премию в 10 000 долларов любому, кто приведет на* учные доказательства вреда для здоровья ГМ продуктов, полу ченных из зарегистрированных ГМ культур. Однако до сих пор ни одного желающего не нашлось. Непоправимый ущерб окру жающей среде, о котором любят говорить «зеленые», также весьма неоднозначен. Достаточно сказать, что после внедрения ГМ растений США впервые вышли на уровень 1920 х годов по использованию токсичных пестицидов».

В1990 году широкомасштабное применение химических ин сектицидов для борьбы с насекомыми вида Helicoverpa armigera, вредителями хлопчатника, привело к появлению мутантов этих вредителей, устойчивых к химическому инсектициду, и к их беспрецедентному размножению. Как утверждают сторонники ГМ продуктов, сравнительный анализ рисков, сопряженных с применением обычных растений, нуждающихся в химических инсектицидах, и трансгенных, самостоятельно поражающих вредителей, свидетельствует в пользу трансгенных.

Главное обвинение противников ГМ продукции заключа ется в том, что поскольку долгосрочные исследования безопас ности ГМ продуктов нигде и никем не проводились, нет уве ренности в том, что их вред для здоровья человека не проявит ся через много лет. По данным санитарных служб Голландии, Швейцарии, Дании и специалистов Медицинского Совета Ве ликобритании употребление нового вида кукурузы, в которой в 2 3 раза повышено содержание белка, может со временем необ ратимо изменить иммунную систему людей, спровоцировать онкологические и нервные заболевания.

Вот типичные примеры исследований противников ГМО:

306

ГЛАВА 6. Биотехнологии и наномедицина

“Данные правительственных исследований в Шотлан дском Институте Урожая показали опасность ГМ растений для насекомых. Божьих коровок кормили тлей, которую разводили на ГМ картофельных растениях. Жизнь божьих коровок сокра щалась до половины ожидаемой продолжительности жизни, а их плодовитость и кладка яиц значительно уменьшалась”.

“Неблагоприятное воздействие пыльцы трансгенной куку рузы на насекомых было показано в исследовании личинок ба бочки Монарх Danaus plexippus. У личинок, питавшихся расти тельным млечным соком с ГМ пыльцой, наблюдалось замед ленное развитие и низкий процент выживаемости”.

Но исследовать на насекомых опасность растений, специ ально сделанных ядовитыми для насекомых – такие опыты нельзя считать корректными. Объективные исследования по казали, что общее количество видов насекомых на полях, засе янных инсектицидными растениями, снижается ровно на один вид – основного вредителя данной культуры. А общее количе ство насекомых на поле, на котором растут устойчивые к вреди телям сорта, намного больше, чем на поле, на котором всех на секомых травят химическими инсектицидами. И насекомояд ных птиц на таких полях живет больше.

Встатьях противников трансгенных растений постоянно цитируется единственное исследование Арпада Пуштая из Уни верситета Абердина (Великобритания). Он показал, что корм ление крыс ГМ картофелем с геном лектина луковиц подснеж ника в течение 10 дней привело к угнетению иммунной систе мы и нарушению деятельности внутренних органов (разруша лась печень, изменялись зобная железа и селезенка, уменьшал ся объем мозга) по сравнению с крысами, которые питались обычным картофелем.

Вдействительности опыты Пуштая подтвердили лишь дав но известный факт: многие белки, относящиеся к классу лекти нов, ядовиты. Методы генной инженерии тут ни при чем: те же нарушения здоровья наступили бы у крыс, которых кормили бы картошкой с добавкой пюре из подснежников или чистого лектина. Белки, которые синтезируют трансгенные растения, и сами эти растения проходят несколько стадий испытаний на токсический и аллергический эффект, вначале на животных, а потом – на людях.

www.nanonewsnet.ru

307

НАНОТЕХНОЛОГИИ ДЛЯ ВСЕХ

Опасность масштабного применения ГМО связывают и с вытеснением ими других растений, что ведет к значительному сокращению биологического разнообразия. Еще одна причина связана с нарушением трофических цепочек: появление ГМ растений, устойчивых к насекомым, становится причиной ис чезновения сначала многих видов насекомых; потом птиц и мелких млекопитающих, питающихся насекомыми; затем и крупных млекопитающих, употребляющих в пищу мелких жи вотных. Но особую опасность представляет третья причина: ве роятность встраивания “чужих” генов в геномы других орга низмов в результате горизонтального переноса генов. Однако у сторонников трансгенных растений есть аргументы и против этих опасений.

Похоже, человечеству в ближайшее время предстоит отве тить на непростой вопрос, какое из двух зол меньше – химика ты или генная инженерия? Или, может, следует найти некую “золотую середину”?

На наш взгляд, подобное противостояние научных лагерей в итоге выгодно всем: скептицизм и осторожность одних послу жит дополнительным фильтром, заставляющим энтузиастов биотехнологии внимательнее относиться к проверке своих дос тижений, прежде чем выпускать их в массы.

Развитие науки никогда не протекало плавно, и внедрение любой новой технологии сопряжено с ошибками. Но ведь на то они и ошибки, чтобы на них учиться и, главное, их исправлять. Ведь никогда не ошибается лишь тот, кто ничего и не делает.

О проекте “Геном человека”

Говоря о биотехнологии, нельзя не упомянуть грандиозней ший за всю ее историю проект, объединивший усилия несколь ких тысяч ученых из разных стран – расшифровку генома чело века. Это был один из самых дорогостоящих научных проектов в истории цивилизации – на него было потрачено более 2,7 миллиардов долларов.

Цель проекта заключалась в создании подробной карты че ловеческого генома, включающей определение всех его генов, их функций и взаимодействий в норме и при нарушениях, при водящих к болезням. Он длился 12 лет и полностью завершил ся к 2001 году. Результатом явились почти три миллиарда букв

308

ГЛАВА 6. Биотехнологии и наномедицина

генетического кода человека, приведенные к строгой системе. Был идентифицирован 29 181 ген. Расшифрованный код дос тупен в сети Интернет.

Что такое карта генома? Грубо говоря, это линейная схема расположения генов в хромосомах с указанием относительных расстояний между ними

Карты генома, подобно географическим, можно строить с различной степенью детализации. Последняя зависит от точ ности метода анализа. Первые генетические карты давали лишь общее представление о структуре ДНК. В них расстояние меж ду генами – мельчайшими “различимыми на местности объек тами” – составляло порядка 7 10 килобаз.

Килобаза (от англ. base основание) единица измерения длины молекулы ДНК, равная тысяче пар оснований (нуклеотидов)

Существует всего четыре вида оснований и, соответствен но, четыре вида их пар. Как известно из информатики, объект, имеющий 4 состояния, несет в себе 2 бита информации. Значит, 1 байт = 8 битам = 4 парам оснований. Получается, что одна ки лобаза соответствует 250 байтам, а во всей ДНК человека зак лючено около 750 Мб информации (что соответствует емкости современного компакт диска).

Внаше время достигнута максимально возможная степень детализации – с точностью до пары нуклеотидов. Современная генетическая карта представляет собой полную последователь ность нуклеотидов с указанием, где кончается один ген и начи нается следующий.

Воснове расшифровки генома лежит сложный процесс, называемый секвенированием (от англ. sequence – последова тельность). Он базируется на механизме “разрезания” ДНК посредством рестриктаз. Грубо говоря, сначала ДНК “шинкует ся” на кусочки, каждый из них анализируется по отдельности,

изатем воссоздается первоначальная структура. Это так назы ваемые методы «первого поколения». Однако в процессе реали зации проекта «Геном человека» было разработано множество других, более мощных методов.

Когда в 1988 г. один из первооткрывателей знаменитой двой ной спирали ДНК Дж. Уотсон публично заявил, что наука вплот

www.nanonewsnet.ru

309

НАНОТЕХНОЛОГИИ ДЛЯ ВСЕХ

ную приблизилась к раскрытию химической основы человечес кой ДНК, к его словам отнеслись довольно скептически.

К тому времени уже было известно, что геном человека насчитывает около 3 млрд. пар нуклеотидов, и эта величина ка залась необозримо большой, ведь тогда расшифровка одного единственного гена занимала годы кропотливой работы целой лаборатории, а в среде генетиков, по аналогии с правилом «один ген – один белок», бытовало выражение «один ген – од на карьера». Поэтому сама мысль о возможности получения та кого объема информации представлялась совершенно фантас тической. Критики Уотсона считали, что решение предложен ной им задачи малореально в научном отношении, поскольку для него потребовалось бы как минимум 30 40 тысяч лет.

Но факт остается фактом: стремительное развитие науки и техники позволило расшифровать 99% человеческого генома всего за 12 лет. На рисунке изображен график, иллюстрирую щий динамику процесса секвенирования ДНК по годам.

Рис 192. Нарастание числа секвенированных генов человека по годам

Если такие тенденции сохранятся и дальше, то, возможно, через несколько лет родители каждого новорожденного мла денца смогут получать его индивидуальный генетический «пас порт» прямо в роддоме.

Одной из причин столь поразительного прогресса науки явилось, в первую очередь, развитие информационных техно логий. Специально разработанные программы для анализа распределения нуклеотидов в ДНК позволили достигнуть фе номенально быстрой расшифровки большинства «слов» текста нашей «книги жизни».

310

ГЛАВА 6. Биотехнологии и наномедицина

Некоторые сведения о человеческом геноме

Функции генов

Развитие генной инженерии помимо практического при менения имеет еще и большое научное значение. Благодаря ус пехам в этой области удалось впервые оценить функции генов в организме. На диаграмме представлено примерное распределе ние функций генов человека.

Рис 193. Примерное распределение генов человека по их функциям

Получена интересная информация о количестве генов, от вечающих за образование и работу отдельных органов и тканей человеческого тела. Оказалось, что больше всего генов пред назначено для формирования и поддержания активности мозга (3195), а меньше всего – для создания эритроцитов (8).

Рис 194. Количество генов, вовлеченных в развитие и функционирование органов и тканей человека

www.nanonewsnet.ru

311

НАНОТЕХНОЛОГИИ ДЛЯ ВСЕХ

Генетическая общность человека и других биологи ческих видов

Помимо человека, к настоящему времени полностью сек венированы геномы более 600 видов живых организмов. При этом оказалось, что количество генов и длина ДНК у разных видов заметно различаются. Если в хромосомах человека содер жится около 750 Мб информации, то, например, у бактерии Mycoplasma genitalium – всего 145 Кб, у бактерии кишечной па лочки Escherichia coli – 1 Mб, у плодовой мушки дрозофилы – 30 Мб, а у лабораторной мышки… почти 750 Мб. То есть, с точ ки зрения объема наследственной информации, человек мало чем отличается от мыши! Более того, результаты расшифровки генома грызуна показали, что у нас совпадают до 80% генов, а 99% можно назвать очень похожими.

Куриный геном в три раза короче генома человека (около 250 Мб). Однако при этом у человека и курицы обнаружено около 60% общих генов.

Расшифрованный геном знаменитой рыбы фугу (Takifugu rubripes), которая является изысканным лакомством в Японии, но при неправильном приготовлении становится смертельно ядовитой, еще более поразил воображение ученых. Размер ге нома фугу равен 91 Мб, что составляет всего около 12% от ге нома человека. Число же генов у этих двух организмов почти одинаково и примерно равно 31 000, а число общих генов у фу гу и человека достигает 75%!

Этот феномен объясняется тем, что наша ДНК состоит, строго говоря, не только из генов. Ген – это участок ДНК, ко дирующий молекулярную структуру определенного белка. Иначе говоря, это отрезок, на котором, как в файле, записана информация о последовательности аминокислот в белке.

Но далеко не все сочетания нуклеотидов несут смысловую нагрузку, кодируя конкретные белки. Подавляющее большин ство нуклеотидных последовательностей в ДНК – так называе мые интроны, не кодирующие ничего, и, вроде бы, не несущие никаких функций. Для них придумали даже такое обидное обозначение, как “джанк*ДНК” (от англ. junk – хлам, мусор). Конечно, о ненужности таких участков не может быть и речи: они хоть и не кодируют белков, но выполняют свои специфи ческие – как правило, регуляторные – функции.

312

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]