Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

МНК, аппроксимация

.docx
Скачиваний:
37
Добавлен:
27.03.2015
Размер:
91.73 Кб
Скачать

(1)

Аппроксима́ция, или приближе́ние — научный метод, состоящий в замене одних объектов другими, в том или ином смысле близкими к исходным, но более простыми.

Аппроксимация позволяет исследовать числовые характеристики и качественные свойства объекта, сводя задачу к изучению более простых или более удобных объектов (например, таких, характеристики которых легко вычисляются или свойства которых уже известны). В теории чисел изучаются диофантовы приближения, в частности, приближения иррациональных чисел рациональными. В геометрии рассматриваются аппроксимации кривых ломаными. Некоторые разделы математики в сущности целиком посвящены аппроксимации, например, теория приближения функций, численные методы анализа.

В переносном смысле употребляется в философии как метод приближения, указание на приблизительный, неокончательный характер. Например, в таком смысле термин «аппроксимация» активно употреблялся Сёреном Кьеркегором (1813—1855) в «Заключительном ненаучном послесловии…»

(2)

  • Для приближённого вычисления интеграла используется формула прямоугольников или формула трапеций, или более сложная квадратурная формула. Фактически при этом происходит приближение подынтегральной функции ступенчатой функцией или вписанной ломаной, интеграл от которой считается мгновенно.

  • Для вычисления значений сложных функций часто используется вычисление значения отрезка ряда, аппроксимирующего функцию.

  • Для обработки экспериментальных или натурных данных. Тут следует рассматривать два случая: 1) аппроксимирующая функция ограничена диапазоном заданных точек и служит в качестве только интерполирующей зависимости; 2) аппроксимирующая функция выступает в роли физического закона и с ее помощью допускается экстраполировать переменные. Приведем пример. Пусть на основе натурных наблюдений получены следующие пары чисел  и (см. [1]):

Если функция будет использована только для интерполяции, то достаточно аппроксимировать точки полиномом, скажем, пятой степени:

где:

Намного сложней обстоит дело в случае, если приведенные выше натурные данные служат опорными точками для выявления закона изменения  с известными граничными условиями. Например:  и . Тут уже качество результата зависит от профессионализма исследователя. В данном случае наиболее приемлемым окажется закон:

где:

Для оптимального подбора параметров уравнений обычно используют метод наименьших квадратов .

(3)

Метод наименьших квадратов (МНК,англ. Ordinary Least Squares, OLS) — математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений (когда количество уравнений превышает количество неизвестных), для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений, для аппроксимации точечных значений некоторой функцией. МНК является одним из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным.

Если некоторая физическая величина зависит от другой величины , то эту зависимость можно исследовать, измеряя y при различных значениях x . В результате измерений получается ряд значений:

x1, x2, ..., xi, , ... , xn;

y1, y2, ..., yi, , ... , yn.

По данным такого эксперимента можно построить график зависимости y = ƒ(x). Полученная кривая дает возможность судить о виде функции ƒ(x). Однако постоянные коэффициенты, которые входят в эту функцию, остаются неизвестными. Определить их позволяет метод наименьших квадратов. Экспериментальные точки, как правило, не ложатся точно на кривую. Метод наименьших квадратов требует, чтобы сумма квадратов отклонений экспериментальных точек от кривой, т.е. [yi – ƒ(xi)]2 была наименьшей.

На практике этот метод наиболее часто (и наиболее просто) используется в случае линейной зависимости, т.е. когда

y = kx    или  y = a + bx.

Линейная зависимость очень широко распространена в физике. И даже когда зависимость нелинейная, обычно стараются строить график так, чтобы получить прямую линию. Например, если предполагают, что показатель преломления стекла n связан с длиной λ световой волны соотношением n = a + b/λ2, то на графике строят зависимость n от λ-2.

Рассмотрим зависимость y = kx (прямая, проходящая через начало координат). Составим величину φ – сумму квадратов отклонений наших точек от прямой

.

Величина φ всегда положительна и оказывается тем меньше, чем ближе к прямой лежат наши точки. Метод наименьших квадратов утверждает, что для k следует выбирать такое значение, при котором φ имеет минимум

или    (19)

Вычисление показывает, что среднеквадратичная ошибка определения величины k равна при этом

,   (20) где – n число измерений.

Рассмотрим теперь несколько более трудный случай, когда точки должны удовлетворить формуле y = a + bx (прямая, не проходящая через начало координат).

Задача состоит в том, чтобы по имеющемуся набору значений xi, yi найти наилучшие значения a и b.

Снова составим квадратичную форму φ , равную сумме квадратов отклонений точек xi, yi от прямой

и найдем значения a и b , при которых φ имеет минимум

 ;

 .

.

Совместное решение этих уравнений дает

  (21)

.  (22)

Среднеквадратичные ошибки определения a и b равны

  (23)

.  (24)

При обработке результатов измерения этим методом удобно все данные сводить в таблицу, в которой предварительно подсчитываются все суммы, входящие в формулы (19)–(24). Формы этих таблиц приведены в рассматриваемых ниже примерах.

(4)

Пример 1. Исследовалось основное уравнение динамики вращательного движения ε = M/J (прямая, проходящая через начало координат). При различных значениях момента M измерялось угловое ускорение ε некоторого тела. Требуется определить момент инерции этого тела. Результаты измерений момента силы и углового ускорения занесены во второй и третий столбцы таблицы 5.

Таблица 5

n

M, Н · м

ε, c-1

M2

M · ε

ε - kM

(ε - kM )2

1

1.44

0.52

2.0736

0.7488

0.039432

0.001555

2

3.12

1.06

9.7344

3.3072

0.018768

0.000352

3

4.59

1.45

21.0681

6.6555

-0.08181

0.006693

4

5.90

1.92

34.81

11.328

-0.049

0.002401

5

7.45

2.56

55.5025

19.072

0.073725

0.005435

123.1886

41.1115

0.016436

По формуле (19) определяем:

.

Отсюда

.

Для определения среднеквадратичной ошибки воспользуемся формулой (20)

= 0.005775 кг-1 · м-2 .

По формуле (18) имеем

; .

SJ = (2.996 · 0.005775)/0.3337 = 0.05185 кг · м2.

Задавшись надежностью P = 0.95 , по таблице коэффициентов Стьюдента для n = 5, находим t = 2.78 и определяем абсолютную ошибку ΔJ = 2.78 · 0.05185 = 0.1441 ≈ 0.2 кг · м2.

Результаты запишем в виде:

J = (3.0 ± 0.2) кг · м2;

.

Пример 2. Вычислим температурный коэффициент сопротивления металла по методу наименьших квадратов. Сопротивление зависит от температуры по линейному закону

Rt = R0(1 + α t°) = R0 + R0 α t°.

Свободный член определяет сопротивление R0 при температуре 0° C , а угловой коэффициент – произведение температурного коэффициента α на сопротивление R0.

Результаты измерений и расчетов приведены в таблице (см. таблицу 6).

Таблица 6

n

t°, c

r, Ом

t-¯ t

(t-¯ t)2

(t-¯ t)r

r - bt - a

(r - bt - a)2,10-6

1

23

1.242

-62.8333

3948.028

-78.039

0.007673

58.8722

2

59

1.326

-26.8333

720.0278

-35.581

-0.00353

12.4959

3

84

1.386

-1.83333

3.361111

-2.541

-0.00965

93.1506

4

96

1.417

10.16667

103.3611

14.40617

-0.01039

107.898

5

120

1.512

34.16667

1167.361

51.66

0.021141

446.932

6

133

1.520

47.16667

2224.694

71.69333

-0.00524

27.4556

515

8.403

8166.833

21.5985

746.804

∑/n

85.83333

1.4005

По формулам (21), (22) определяем

 ,

R0 = ¯R- α R0¯ t = 1.4005 - 0.002645 · 85.83333 = 1.1735 Ом .

Отсюда:

 .

Найдем ошибку в определении α. Так как  , то по формуле (18) имеем:

.

Пользуясь формулами (23), (24) имеем

  ;

= 0.014126 Ом.

Тогда

.

Задавшись надежностью P = 0.95, по таблице коэффициентов Стьюдента для n = 6, находим t = 2.57 и определяем абсолютную ошибку Δα = 2.57 · 0.000132 = 0.000338 град-1.

α = (23 ± 4) · 10-4 град-1 при P = 0.95.

.

Пример 3. Требуется определить радиус кривизны линзы по кольцам Ньютона. Измерялись радиусы колец Ньютона rm и определялись номера этих колец m. Радиусы колец Ньютона связаны с радиусом кривизны линзы R и номером кольца уравнением

r2m = mλR - 2d0R,

где d0 – толщина зазора между линзой и плоскопараллельной пластинкой (или деформация линзы),

λ – длина волны падающего света.

Пусть

λ = (600 ± 6) нм; r2m = y; m = x; λR = b; -2d0R = a,

тогда уравнение примет вид y = a + bx.

.

Результаты измерений и вычислений занесены в таблицу 7.

Таблица 7

n

x = m

y = r2, 10-2 мм2

m -¯m

(m -¯m)2

(m -¯m)y

y - bx - a, 10-4

(y - bx - a)2, 10-6

1

1

6.101

-2.5

6.25

-0.152525

12.01

1.44229

2

2

11.834

-1.5

2.25

-0.17751

-9.6

0.930766

3

3

17.808

-0.5

0.25

-0.08904

-7.2

0.519086

4

4

23.814

0.5

0.25

0.11907

-1.6

0.0243955

5

5

29.812

1.5

2.25

0.44718

3.28

0.107646

6

6

35.760

2.5

6.25

0.894

3.12

0.0975819

21

125.129

17.5

1.041175

3.12176

∑/n

3.5

20.8548333

Рассчитываем:

1. a и b по формулам (21), (22).

;

a = ¯ r2 - b¯m = (0.208548333 - 0.0594957 · 3.5) = 0.0003133 мм2.

2. Рассчитаем среднеквадратичные ошибки для величин b и a по формулам (23), (24)

 ;

3. При надежности P = 0.95 по таблице коэффициентов Стьюдента для n = 6 находим t = 2.57 и определям абсолютные ошибки

Δb = 2.57 · 0.000211179 = 6·10-4 мм2;

Δa = 2.57 · 0.000822424 = 3· 10-3 мм2.

4. Записываем результаты

b = (595 ± 6)·10-4 мм2 при Р = 0.95;

a = (0.3 ± 3)·10-3 мм2 при Р = 0.95;

Из полученных результатов опыта следует, что в пределах ошибки этого опыта прямая r2m = ƒ(m) проходит через начало координат, т.к. если ошибка значения какого-либо параметра окажется сравнимой или превысит значение параметра, то это означает, что скорей всего, настоящее значение этого параметра равно нулю.

В условиях данного эксперимента величина   a  не представляет интереса. Поэтому мы ею больше заниматься не будем.

5. Подсчитаем радиус кривизны линзы:

R = b / λ = 594.5 / 6 = 99.1 мм.

6. Так как для длины волны дана систематическая ошибка, подсчитаем и для R систематическую ошибку по формуле (16), взяв в качестве систематической ошибки величины b ее случайную ошибку Δb.

.

Записываем окончательный результат R = (99 ± 2) мм   ε ≈ 3% при P = 0.95.