Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Ekologichesky_monitoring / Мониторинг_пособие

.pdf
Скачиваний:
72
Добавлен:
30.03.2015
Размер:
900.17 Кб
Скачать

31

должны выдерживаться на водотоках начиная со створа, расположенного в одном километре выше ближайшего по течению пункта водопользования (водозабор для хозяйственно-питьевого водоснабжения, места купания, организованного отдыха, территория населенного пункта и т.п.) вплоть до самого места водопользования, а на водоемах - на акватории в радиусе одного километра от пункта водопользования. Ближайшие пункты водопользования определяются органами санитарноэпидемиологической службы.

При сбросе сточных вод или других видах хозяйственной деятельности, влияющих на состояние рыбохозяйственных водотоков и водоемов, нормы качества поверхностных вод (или их природный состав и свойства в случае природного превышения этих норм) должны соблюдаться на протяжении всего участка водопользования, начиная с контрольного створа, определяемого в каждом конкретном случае органами Госкомэкологии, но не далее чем 500 м от места сброса сточных вод или расположения других источников загрязнения поверхностных вод (мест добычи полезных ископаемых, производства работ на водном объекте и т.п.).

Для сбросов сточных вод в черте населенного пункта в соответствии с «Правилами охраны поверхностных вод» ПДС устанавливаются исходя из отнесения нормативных требований к самим сточным водам. При этом следует руководствоваться тем, что использование водных объектов в черте населенных мест относится к категории коммунально-бытового водопользования.

Если значения ПДС по объективным причинам не могут быть достигнуты, для таких предприятий устанавливаются вре-

менно согласованные сбросы вредных веществ (ВСС) и вво-

дится поэтапное снижение показателей сбросов вредных веществ до значений, которые обеспечивают соблюдение ПДС.

Лимитирование размещения твердых промышленных отходов (разработка проектов лимитов размещения) осуществляется на основании «Временных правил охраны окружающей среды от отходов производства и потребления в РФ». При этом под организованным размещением отходов понимаются регламентированные и осуществляемые в соответствии с установлен-

32

ными нормами и правилами процессы выделения, концентрирования, сбора, транспортировки, накопления, временного хранения отходов, предусматривающего возможность их дальнейшего использования, переработки, или ликвидации, захоронения.

2.8.Нормирование в области радиационной безопасности

Вприроде существует три основных вида радиоактивного излучения - альфа, бета и гамма.

Гамма-излучение представляет собой электромагнитное излучение высокой энергии и обладает наибольшей проникающей способностью. Соответственно, защита от внешнего гаммаизлучения представляет наибольшие проблемы.

Бета-излучение имеет корпускулярную природу и представляет собой поток отрицательно заряженных частиц (электронов). Бета-излучение обладает меньшей проникающей способностью. Защититься от этого излучения при внешнем источнике можно сравнительно легко. В принципе, бета-частицы задерживаются неповрежденной кожей. Однако при поступлении внутрь организма бета-активные радионуклиды испускают хорошо поглощаемые тканями организма бета-частицы. Возникающие при этом в организме разрушения значительно превосходят таковые, производимые гамма-излучением.

Альфа-излучение представляет собой поток положительно заряженных частиц с зарядом 2 и массой, равной 4, (по существу — ядра гелия). Этот вид излучения легко поглощается любой средой. Защититься от него можно буквально листом бумаги. Однако поступление альфа-излучателя внутрь организма может вызвать трагические последствия.

Количественной характеристикой источника излучения служит активность, выражаемая числом радиоактивных превращений в единицу времени. В СИ единицей активности является беккерель (Бк) — 1 распад в секунду (с-1). Иногда используется внесистемная единица кюри (Ки), соответствующая активности 1 г радия. Соотношение этих единиц определяется следующей формулой: 1 Ки = 3,7·1010 Бк.

Интенсивность альфа- и бета-излучения может быть охарактеризована активностью на единицу площади (с-1·м-2). Ин-

33

тенсивность гамма-излучения характеризуется мощностью экспозиционной дозы.

Экспозиционная доза измеряется по ионизации воздуха и равна количеству электричества, образующегося под действием гамма-излучения в 1 кг воздуха. В СИ экспозиционная доза выражается в кулонах на кг (Кл/кг).

Весьма популярна также внесистемная единица экспозиционной дозы — рентген. Это доза гамма-излучения, при которой в 1 см3 воздуха при нормальных физических условиях (температура 0о С и давление 760 мм рт.ст.) образуется 2,08·109 пар ионов, несущих одну электростатическую единицу количества электричества.

Мощность экспозиционной дозы отражает скорость накопления дозы и выражается в Кл/кг·с (в СИ) или в Р/ч (во внесистемных единицах).

Наиболее адекватный способ описания степени радиоактивного загрязнения местности - плотность загрязнения, которая представляет собой активность на единицу площади (с учетом изотопного состава). Этот способ, однако, весьма трудоемок, требует проведения лабораторных анализов и не всегда может быть применен для оперативной оценки. Обычно такая оценка производится с помощью методов полевой дозиметрии.

При этом используемые приборы, методы и единицы измерения зависят от типа загрязнения. Мерой загрязнения гаммаизлучателями является мощность экспозиционной дозы; бетазагрязнение характеризуется плотностью потока бета-частиц. Оценка степени загрязнения альфа-излучателями в полевых условиях невозможна.

В то же время населению, как правило, в качестве характеристики загрязнения сообщается (в т.ч. и через средства массовой информации) только о мощности экспозиционной дозы. Эта величина, однако, является лишь одной из характеристик радиационной ситуации. Существует множество искусственных радиоактивных изотопов, которые практически не испускают гамма-квантов, но при этом являются очень опасными источниками излучения. Мощность экспозиционной дозы, определяемая при помощи гамма-дозиметра, не может отразить степени загрязнения такими изотопами.

34

2.9. Система нормирования в области радиационной безопасности

Действующая система нормирования строится на понятии дозовой нагрузки. Основными документами, в соответствии с которыми осуществляется радиационный контроль за безопасностью населения, являются Федеральный Закон «О радиационной безопасности населения» и принятые в его развитие «Нормы радиационной безопасности НРБ-96». Оба документа служат для обеспечения радиационной безопасности человека. Экологических нормативов, устанавливающих допустимые воздействия на экосистемы, в области радиационной безопасности не существует.

В системе нормирования используются следующие основные понятия:

Поглощенная доза - фундаментальная дозиметрическая величина, определяемая количеством энергии, переданной излучением единице массы вещества.

За единицу поглощенной дозы облучения принимается грей (джоуль на килограмм) — поглощенная доза излучения, переданная массе облучаемого вещества в 1 кг и измеряемая энергией в 1 Дж любого ионизирующего излучения (1 Гр = 1 Дж/кг).

Эквивалентная доза. Поскольку поражающее действие ионизирующего излучения зависит не только от поглощенной дозы, но и от ионизирующей способности излучения, вводится понятие эквивалентной дозы. Для расчета эквивалентной дозы поглощенную дозу умножают на коэффициент, отражающий способность данного вида излучения повреждать ткани организма. При этом альфа-излучение считается в двадцать раз опаснее других видов излучений.

Единицей эквивалентной дозы является зиверт — доза любого вида излучения, поглощенная в 1 кг биологической ткани, создающая такой же биологический эффект, как и поглощенная доза в 1 Гр фотонного излучения.

Эффективная эквивалентная доза. Следует учитывать,

что одни части тела (органы) более чувствительны к радиационным повреждениям, чем другие. Поэтому дозы облучения орга-

35

нов и тканей учитываются с различными коэффициентами. Эффективная эквивалентная доза отражает суммарный эффект облучения для организма; она также измеряется в зивертах.

Закон «О радиационной безопасности населения» устанавливает допустимую дозовую нагрузку на население на уровне 1 мЗв/год.

В соответствии с НРБ-96 устанавливаются следующие категории облучаемых лиц:

персонал (подразделяемый на группы А и Б);

все население, включая лиц из персонала, вне сферы и условий их производственной деятельности.

Нормы радиационной безопасности (НРБ) регламентируют допустимые уровни воздействия радиации на человека. На основе этих норм разрабатываются нормативные документы, регламентирующие порядок обращения с различными источниками ионизирующего излучения, подходы к защите населения от радиации и т.п. В настоящее время действуют «Основные санитарные правила работы с радиоактивными веществами и другими источниками ионизирующих излучений ОСП-72/87», основанные на ранее действовавших нормативных документах (в частности, НРБ-76/87). Эти правила, в частности, содержат требования по:

обеспечению радиационной безопасности персонала учреждений и населения, а также по охране окружающей среды от загрязнения радиоактивными веществами;

учету, хранению и перевозке источников ионизирующего излучения;

сбору, удалению и обезвреживанию твердых и жидких радиоактивных отходов.

Действие документа распространяется на любые предприятия и учреждения, независимо от ведомственной принадлежности и формы собственности, где «производятся, обрабатываются, перерабатываются, применяются, хранятся, обезвреживаются и транспортируются естественные и искусственные радиоактивные вещества и другие источники радиоактивного излучения».

36

Вопросы для самопроверки

1.Какие основные понятия и определения используются при нормировании качества природной среды?

2.В чем заключается нормирование качества воздуха?

3.В чем заключается нормирование качества воды?

4.В чем заключается нормирование качества почвы?

5.Назовите классы опасности химических соединений.

6.Каким образом нормируется воздействие на окружающую сре-

ду?

7.В чем заключается нормирование в области радиационной безо-

пасности?

ГЛАВА 3

ЭКОЛОГИЧЕСКОЕ НОРМИРОВАНИЕ

Регулирование качества природной среды основано на определении экологически допустимого воздействия на нее, когда самоочищение природы еще возможно. Определенными нормами такого щадящего воздействия являются установленные ме- диками-токсикологами предельно допустимые концентрации загрязняющих веществ (ПДК), не вызывающие нежелательных последствий в природной среде. ПДК достаточно малы. Они установлены для различных объектов - воды (питьевая вода, вода водоемов рыбохозяйственного значения, сточные воды), воздуха (среднесуточная концентрация, воздух рабочей зоны, максимально допустимая разовая ПДК), почв.

Перечень и объем выбрасываемых в окружающую среду загрязняющих веществ чрезвычайно велики: по некоторым оценкам, до 400 тыс. наименований, включая радионуклиды. Прежде всегоконтролю должны подлежать вещества, выброс которых носит массовый характер, а, следовательно, загрязнение ими наблюдается повсеместно. Это, например, диоксид серы, монооксид углерода, пыль, что характерно для городского воздуха; нефтепродукты, поверхностно-активные вещества - для природных вод; пестициды - для почв. Обязательно следует контролировать и самые токсичные вещества, отличающиеся наиболее низкими ПДК. Это позволяет сформировать список приоритетных загрязняющих веществ, которые следует определять в первую очередь.

37

Например, большинство нормируемых загрязняющих веществ для воздуха имеют ПДК в пределах 0,005-0,1 мг/м3. В них попадают пентаоксид ванадия, неорганические соединения мышьяка (исключая мышьяковистый водород), шестивалентный хром, некоторые органические вещества (ацетофенон, стирол и др.). Для небольшого перечня веществ ПДК еще меньше: металлическая ртуть - 0,0003 мг/м3, свинец и его соединения - 0,0007, карбонилникель - 0,0005, бенз[а]пирен - 0,000 001 мг/м3. Основное количество нормируемых загрязняющих веществ для воды водоемов имеют ПДК 0,1-1 мг/л. Для многих токсичных веществ установлена ПДК 0,001-0,003 мг/л. Это неорганические соединения селена, ртути, органические соединения - изомерные дихлорбензолы, тиофос. Небольшое число веществ - соединения бериллия, диэтилртуть, тетраэтилолово имеют ПДК в пределах 0,0001-0,0002 мг/л. Для особенно опасных токсичных веществ, таких как растворимые соли сероводородной кислоты, активный хлор, бенз[а]пирен, N-нитрозоамины, диоксины (например, чрезвычайно токсичный 2,3,7,8-тетрахлордибензо-4- диоксин), в качестве норматива установлено полное отсутствие их в воде. В водоемах рыбохозяйственного значения в воде не допускается наличия еще и ДДТ и других пестицидов.

Отсюда следуют два вывода. Первый состоит в том, что для оценки опасности загрязнения следует иметь некий образец для сравнения. Эту функцию выполняют исследования, проводимые в биосферных заповедниках. Второй вывод относится к аналитической химии: необходимо применять мощные, информативные и чувствительные методы анализа, чтобы контролировать концентрации, меньшие ПДК. В самом деле, что означает нормативное «отсутствие компонента»? Может быть, его концентрация настолько мала, что его традиционным способом не удается определить, но сделать это все равно нужно. Действительно, охрана окружающей среды - вызов аналитической химии.

Высокоэффективные методы контроля состояния окружающей среды исключительно важны для диагностики токсикантов. Принципиально важно, чтобы предел обнаружения загрязняющих веществ аналитическими методами был не ниже 0,5 ПДК. Кроме того, например, при определении основных компо-

38

нентов атмосферного воздуха - кислорода, диоксида углерода, озона - требуется высокая точность. Многокомпонентность объектов окружающей среды предопределяет большие сложности в качественном обнаружении и количественном определении загрязняющих веществ. Ключевая роль принадлежит химическим, физическим и физико-химическим методам аналитической химии. В связи с чрезвычайно большим количеством выполняемых анализов все большее значение приобретают автоматические и дистанционные методы анализа.

Примером является аналитическая химия природных и сточных вод. Например, актуальность определения рН вод Мирового океана. Существует совокупность сложных процессов между находящимися в воде ионами и молекулами, атмосферным углекислым газом и твердым карбонатом кальция. Это приводит к образованию буферной системы с рН 8,0-8,4. Отклонение от этого естественно-оптимального значения рН может привести к крайне нежелательным последствиям, если учесть, что фитопланктон океана производит почти половину всего атмосферного кислорода. Подчеркнем наличие и других показателей качества океанической воды: концентрация катионов и анионов, содержание биогенных элементов, входящих в состав организмов, растворенных газов, микроэлементов, органических веществ.

Весьма содержателен перечень обобщенных показателей при мониторинге вод, характеризующих их общую загрязненность, а именно химическое потребление кислорода (ХПК), биохимическое потребление кислорода (БПК), общий органический углерод, растворенный органический углерод, общий азот, адсорбирующиеся органические галогениды, экстрагирующиеся органические галогениды.

Рассмотрим важнейшие из них - ХПК и БПК. ХПК (COD - Chemical Oxygen Demand) - мера общей загрязненности воды содержащимися в ней органическими и неорганическими восстановителями, реагирующими с сильным окислителем. Ее обычно выражают в молях эквивалента кислорода, израсходованного на реакцию окисления примесей избытком бихромата: остаток бихромата оттитровывают стандартным раствором соли

Fe(II).

39

Поскольку ХПК не характеризует все органические загрязнители, окисляемые до углекислоты и воды, проводят еще определение общего органического углерода. Для этого в пробе в жестких условиях окисляют органические загрязнители. Выделяющийся CO2 поглощают раствором щелочи. Оттитровав остаток щелочи кислотой, находят искомый показатель. Вычислив отношение ХПК к общему органическому углероду, получают показатель загрязненности сточных вод органическими веществами.

БПК (BOD - Biochemical Oxygen Demand) - это количество кислорода, требующееся для окисления находящихся в воде органических веществ в аэробных условиях в результате происходящих в воде биологических процессов. Для его определения отбирают две одинаковые пробы воды. В первой сразу же определяют содержание растворенного кислорода. К пробе добавляют раствор соли Mn(II) и аммиак, в результате чего образуется окислитель - гидратированная форма двуокиси марганца. Далее вводят избыток иодида калия и выделившийся иод оттитровывают раствором тиосульфата.

Вторую пробу закрывают и оставляют на 2, 3, 5, 10 или 15 суток. Далее, действуя описанным выше способом, находят остаток кислорода. Разность между первым и вторым определениями дает ХПК.

Приведенные примеры иллюстрируют применение в экологическом мониторинге классических химических методов анализа. Особенно велика роль современных методов аналитической химии, часто называемых инструментальными. Лишь современные методы анализа, среди них спектроскопические, электрохимические, хроматографические и др. (из них отметим масс-спектрометрию), позволяют достигать необходимых низких пределов обнаружения, высоких чувствительности и избирательности определений. Ввиду важности этой проблемы многие фирмы насыщают рынок приборами простыми и сложными, специально приспособленными для решения задач мониторинга различных объектов.

Инструментальные методы современной аналитической химии основанны на измерении различных физических свойств определяемых веществ или продуктов их химических превра-

40

щений (аналитических реакций) с помощью физических и физи- ко-химических приборов. Результат измерения, несущий хими- ко-аналитическую информацию, часто называют аналитическим сигналом.

Спектроскопические методы анализа основаны на использовании взаимодействия атомов или молекул определяемых веществ с электромагнитным излучением широкого диапазона энергий. Это могут быть (в порядке уменьшения энергии) гам- ма-кванты, рентгеновское излучение, ультрафиолетовое и видимое, инфракрасное, микроволновое и радиоволновое излучение. Сигналом может быть испускание или поглощение излучения. Важнейшими для экологического мониторинга, по-видимому, являются нейтронно-активационный, рентгеноспектральный, атомно-абсорбционный и атомно-эмиссионный анализ, спектрофотометрический и флуориметрический методы, инфракрасная спектрометрия.

Ценную информацию в анализе вод предоставляют электрохимические методы анализа: потенциометрия, полярографические и кулонометрические методы.

Исключительно мощное средство контроля загрязнения различных объектов окружающей среды - хроматографические методы, позволяющие анализировать сложные смеси компонентов. Наибольшее значение приобрели тонкослойная, газожидкостная и высокоэффективная жидкостная и ионная хроматография. Будучи несложной по технике выполнения, тонкослойная хроматография успешно применяется для определения пестицидов и других органических соединений-загрязнителей. Газожидкостная хроматография эффективна при анализе многокомпонентных смесей летучих органических веществ. Применение различных детекторов, например малоизбирательного детектора по теплопроводности - катарометра и избирательных - пламен- но-ионизационного, электронного захвата, атомноэмиссионного, позволяет достигать высокой чувствительности при определении высокотоксичных соединений. Высокоэффективную жидкостную хроматографию применяют при анализе смесей многих загрязняющих веществ, прежде всего нелетучих. Используя высокочувствительные детекторы: спектрофотометрические, флуориметрические, электрохимические, можно оп-

Соседние файлы в папке Ekologichesky_monitoring