Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций по ТНИ 3 семестр.doc
Скачиваний:
83
Добавлен:
30.03.2015
Размер:
2.64 Mб
Скачать

Раздел №7

7. Испытание элементов машин, узлов и изделий в целом на надежность и долговечность.

7.1 Основы статистических испытаний элементов машин на надежность

Основные положения

Подавляющее большинство технических расчетов: будь то новая конструкция, новый технологический процесс и т.д., проектируются с определенными ограничениями и допущениями, диктуемыми требованиями простоты, удобства или возможности расчета.

Поэтому в процессе реализации конструкторско-технологических разработок производится изготовление опытных образцов, их пробные испытания и доводка.

И даже в процессе установившегося производства, определенная часть выпускаемой продукции, должна подвергаться испытаниям в целях контроля стабильности качественных характеристик.

По условиям проведения различают следующие виды испытаний:

  1. Лабораторные испытания, осуществляемые в специально оборудованных лабораториях.

  2. Стендовые заводские испытания, осуществляемые в заводских цехах, контрольно-испытательных станциях и т.д.

3. Полевые, или эксплуатационные испытания, проводимые в условиях повседневной работы машины (нередко в более жестких условиях).

Все виды испытаний преследуют цель собрать информацию, позволяющую произвести оценку степени соответствия служебных характеристик элемента, узла или изделия в целом расчетным показателям, а также оценить изменение этих показателей во времени.

Объектами испытаний могут служить:

  1. Образцы материалов, при испытании различных материалов на физико-механические и химические характеристики.

  2. Сопряжения или кинематические пары (трущиеся элементы) машин. К ним относятся подшипники, зубчатые колеса, направляющие и т.д.

3. Узлы изделий, коробки скоростей, редукторы, гидрогенераторы, муфты и т.д.

  1. Машины в целом.

  2. Системы машин.

Выбор того или иного объекта для испытаний зависит от уровня, на котором осуществляется отработка или контроль качественных показателей изделия.

Эти же причины определяют выбор показателей, по которым выполняется испытание и собирается информация.

7.2. Обработка результатов испытаний и оценка их доброкачественности

Как уже указывалось, в результате проведения различного вида испытаний и подконтрольной эксплуатации накапливается определенный объем информации по фиксируемым параметрам и показателям (отказам, временам безотказной работы, детерминированным показателям: пределу прочности, усталости и т.д.).

Но в силу ряда случайных причин, получаемые результаты наблюдений при повторении опыта не будут совпадать — будет иметь место разброс значений, и иногда весьма значительный. Это явление обязывает оценивать точность и достоверность получаемых результатов с целью избежать ошибок, искажающих изучаемое явление или процесс. Подобная оценка осуществляется путем статистико-вероятностной обработки результатов наблюдений.

Рассмотрим ряд задач решаемых при обработке результатов наблюдений.

Прежде всего отметим, что не всегда удается собрать большой объем информации. Чаще всего значение искомого параметра вычисляется на базе ограниченного числа опытов и поэтому в результате будет содержаться случайная ошибка. Такое приближенное случайное значение называется оценкой параметра.

К оценкам предъявляют следующие требования, позволяющие считать ее «доброкачественной» — наиболее точно отражающей изучаемой явление.

  1. Необходимо, чтобы при увеличении числа наблюдений «n» оценка параметра «a» стремилась к некоторому теоретическому параметру «a» (сходилась по вероятности). Оценка, обладающая таким свойством, называется состоятельной.

  2. Желательно, чтобы пользуясь величиной вместо a, мы не делали систематической ошибки в ту или другую сторону, — чтобы выполнялось условие М[] = a. Оценка, удовлетворяющая такому условию, называется несмещенной.

3. Необходимо, чтобы выбранная несмещенная оценка обладала по сравнению с другими наименьшей дисперсией D[] = min.

Оценка, обладающая таким свойством, называется эффективной. На практике не всегда удается удовлетворить всем этим требованиям. Бывает так, что эффективная оценка и существует, но формулы для ее вычисления будут слишком сложны и удобнее будут пользоваться другой с несколько большей дисперсией. Иногда применяются незначительно смещенные оценки и тоже с целью упрощения расчетов.

Оценка для математического ожидания и дисперсии

Если над некоторой случайной величиной X проведены испытания и получен ряд значений x1, х2, ...,xn, то в качестве несмещенной и состоятельной оценки математического ожидания принимается среднее арифметическое из этих значений

где — статистическое математическое ожидание. Эффективность или неэффективность оценки зависит от вида закона распределения случайной величиныX. В теории вероятностей доказывается, что минимальная дисперсия Д будет иметь место при нормальном законе распределения случайной, величины X. При других законах распределения этого может и не быть.

В качестве состоятельной и несмещенной оценки для дисперсии принимается статистическая дисперсия, определяемая через второй начальный момент.

или

Оценка для дисперсии не является эффективной. Она является асимптотически эффективной, т. е. при n → ∞ Dmin.

Доверительный интервал. Доверительная вероятность

Если значение испытываемого параметра оценивается одним числом, то оно называется точечным. Но в большинстве задач нужно найти не только наиболее достоверное численное значение, но и оценить степень достоверности.

Нужно знать: какую ошибку вызывает замена истинного параметра а его точечной оценкой ; с какой степенью уверенности можно ожидать, что эти ошибки не превысят известные заранее установленные пределы.

Для этой цели в математической статистике пользуются так называемыми доверительными интервалами и доверительными вероятностями.

Если для параметра а получена из опыта несмещенная оценка , и поставлена задача оценить возможную при этом ошибку, то необходимо назначить некоторую достаточно большую вероятность β (например β = 0,9; 0,95; 0,99 и т.д.), такую, что событие с вероятностью β можно было бы считать практически достоверным.

В этом случае можно найти такое значение ε для которого P(|-a| < ε) = β.

Рис. 7.1. Схема доверительного интервала.

В этом случае диапазон практически возможных ошибок, возникающих при замене а на не будет превышать ± ε. Большие по абсолютной величине ошибки будут появляться только с малой вероятностью α = 1 – β. Событие противоположное и неизвестное с вероятностью β будет попадать в интервал Iβ = (- ε;+ ε). Вероятность β можно толковать, как вероятность того, что случайный интервал Iβ накроет точку а (рис. 7.1).

Вероятность β принято называть доверительной вероятностью, а интервал Iβ принято называть доверительным интервалом. На рис. 7.1 рассматривается симметричный доверительный интервал. В общем случае это требование не является обязательным.

Границы интервала а1 = - ε иa2 = + ε, называются доверительными границами.

Доверительный интервал значений параметра a можно рассматривать как интервал значений a, совместных с опытными данными и не противоречащих им.

Выбирая доверительную вероятность β, близкую к единице, мы хотим иметь уверенность в том, что событие с такой вероятностью произойдет при осуществлении определенного комплекса условий.

Это равносильно тому, что противоположное событие не произойдет, что мы пренебрегаем вероятностью события, равною α = 1 – β. Укажем, что назначение границы а пренебрежимо малых вероятностей не являются математической задачей. Назначение такой границы находится вне теории вероятностей и определяется в каждой области степенью ответственности и характером решаемых задач.

Существуют специальные правила назначения границы пренебрежимо малых вероятностей. Например, такие случайные факторы, как уровень паводковых вод в реке или величина расхода воды в ней, могут привести к разрушению гидротехнических сооружений.

Но установление слишком большого запаса прочности приводит к неоправданному и большому удорожанию стоимости строительства.

Для сооружений особо капитальных (основные постоянные сооружения гидроэлектростанций мощностью более 250 тыс. квт с выработкой электроэнергии более 1 млрд. квт-ч в год) пренебрежимо малыми вероятностями считаются а = 0,001 при нормальных условиях эксплуатации и а = 0,0001 — при чрезвычайных. Для сооружений обычной капитальности назначают а = 0,002 или а = 0,005 в зависимости от условий эксплуатации.

Поясним, что здесь пренебрежение возможностью появления события с вероятностью в 0,001 означает риск разрушения один раз в 1000 лет.

Оценка вероятности по частоте

При испытаниях часто приходится оценивать неизвестную вероятность Р события А по его частоте в «n» независимых опытах.

В общем случае, если в «п» проведенных опытах обозначить появление события А единицей, а непоявление события — нулем, то эмпирическая вероятность будет равна

Математическое ожидание данной величины равно: М[] = р, а ее дисперсия: D[] = pq/n, где q = 1 – p.

В теории вероятностей доказывается, что эта дисперсия является минимально возможной, означающей, что оценка является эффективной.

Доверительный интервал для вероятности будет равен Iβ() = (p1; p2),

где

При n → ∞ величины → 0 и → 0, поэтому формулы в пределе принимают вид

Формулами можно пользоваться при достаточно больших п (порядка сотен опытов) и когда вероятность р не слишком велика (когда величины пр и nq порядка 10 и более).

При малом числе опытом, а также в том случае, когда вероятность р очень велика или очень мала формулами для построения доверительного интервала пользоваться нельзя, т. к. они получены с рядом допущений.

В этом случае доверительный интервал строят из точного закона распределения частоты каковым является биномиальное распределение, для которого

где Рт,п — вероятность появления т событий в п опытах, число т сочетаний в n опытах. Частота равна .

Значение доверительного интервала в этих случаях лучше не вычислять, а находить по специальным графикам. На рис. 7.2 приведен такой график для доверительной вероятности β = 0,9. В справочной литературе существуют таблицы p1 и р2 для различных β.

Рис. 7.2. Номограмма для определения p1; p2 при доверительной вероятности. β = 0.9.

Метод наибольшего правдоподобия

Одним из важнейших методов для отыскания оценок параметров по данным испытания является метод наибольшего правдоподобия.

Если мы имеем выборку результатов испытаний случайной величины X объема п: х1; х2; ... хп; плотностью X будет функция p(xi θ), зависящая от параметра θ.

Фунцией правдоподобия называется функция.

L(x1; х2,... хп; θ) = р(х1 θ)р(х2, θ)... р(хп θ)

Сущность оценки заключается в том, что выбирается такое значение аргумента, θ, которое обращает функцию L в максимум. Значение L при θ mах и называется оценкой наибольшего правдоподобия. Для получения Lmax решается следующее уравнение и и отобрать то решение bQ(x1, x2, ... хп), которое обращает L в максимум.