Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
материалы.doc
Скачиваний:
137
Добавлен:
31.03.2015
Размер:
1.9 Mб
Скачать

Физические свойства

Блеск стеклянный, в изломе жирноватый. Твердость 7. Удельный вес 2,6-2,65 г/см3. Бесцветный, белый, сероватый, дымчатый черный, розовый, фиолетовый, зеленый. Черты не дает. Спайность отсутствует. Излом неровный. Сплошной плотный, рыхлый (кварцевый песок); кроме того вкрапления, отдельные кристаллы или друзы. Кристаллы имеют форму шестигранной призмы, увенчанной пирамидой. Грани кристаллов покрыты поперечной штриховкой. Сингония тригональная. Кристаллы наросшие или вросшие. В Казахстане найден кристалл горного хрусталя величиной с двухэтажный дом, его вес 70 т.

В районах распространения песков (в пустынях) встречаются кристаллы и друзы гипса (псевдоморфозы кварца по гипсу), пронизанные зернами песка, что сообщает этим образованиям большую твердость, не присущую гипсу.

Отличительные признаки. Характерными признаками для кварца являются неметаллический блеск, большая твердость (оставляет царапину на стекле), отсутствие спайности. Кварц можно спутать схалцедоном,опалом, полевым шпатом инефелином. Халцедон и опал отличаются восковым блеском и плотным строением. Для полевого шпата характерна совершенная спайность в двух направлениях. Нефелин растворяется в крепкой серной кислоте. Горный хрусталь похож на бесцветный топаз. В отличие от горного хрусталя у топаза наблюдается спайность в одном направлении.

Химические свойства. В кислотах не растворяется (за исключением HF).

Разновидности.

  1. Горный хрусталь – бесцветный, прозрачный.

  2. Цитрин – лимонно-желтый, прозрачный.

  3. Аметист – фиолетовый, сиреневый, лиловый, малиновый, прозрачный.

  4. Раухтопаз – дымчатый, прозрачный.

  5. Морион – черный, непрозрачный.

  6. Розовый кварц – сплошной зернистый.

  7. Зеленый кварц (празем).

  8. Молочно-белый кварц – непрозрачный.

  9. Авантюрин (искряк) – мелкозернистый, желтого, бурого цвета с мерцающим золотистым отливом.

Происхождение

Кварц является наиболее распространенным минералом земной коры (около 65% земной коры состоит из кварца). Он входит в состав кислых магматических пород (граниты,липариты, кварцевые порфиры), метаморфических пород (гнейсы, кварциты, слюдяные сланцы), пегматитов; из кварца состоят нередко гидротермальные жилы. Кварц также встречается в контактах и в россыпях. Аметист встречается в пегматитовых жилах и в пустотах излившихся магматических пород. Горный хрусталь, розовый кварц, дымчатый и черный кварц встречаются в пегматитовых жилах.

На поверхности Земли возникают скопления кварцевых песков и кварцевого галечника, щебня, гравия, дресвы в результате физического и химического разрушения пород глубинного происхождения, содержащих кварц. Это объясняется химической стойкостью кварца.

Спутники. В магматических породах: полевые шпаты, слюды, роговая обманка. В пегматитовых жилах:ортоклаз,микроклин, альбит, плагиоклаз, слюды, топаз,берилл, касситерит, вольфрамит, молибденит. В рудных жилах: сульфиды, золото. В вулканических породах: кальцит. В россыпях: золото, берилл, топаз и др.

Применение

Кристаллы кварца, обладающие уникальными физическими свойствами, применяются в электротехнике, ультразвуковой технике, оптическом приборостроении и других отраслях. Исключительно прозрачные кристаллы горного хрусталя применяются в производстве стекол оптических инструментов, ювелирных, художественных изделий и химической посуды. Горный хрусталь, раухтопаз, морион используются в радиотехнике как стабилизатор радиоволны (позволяют передавать и принимать волны строго определенной длины). В последнее время горный хрусталь применяется в телемеханике и автоматике. Пластинки из горного хрусталя используются в высококачественных генераторах, без которых не могут работать современные приборы. Аметист – «каменная фиалка». Особенно ценятся бразильский, шриланкийский и уральский аметист. Окрашенные разности кварца употребляются как полудрагоценные и поделочные камни.

Стеклообразное состояние является основной разновидностью аморфного состояния вещества. Стеклами называют аморфные тела, получаемые путем переохлаждения расплава независимо от их химического состава и температурной области затвердевания. По химическому составу имеющие практическое значение стекла делятся на три основных типа:оксидные - на основе оксидов (SiO2, B2O3, GeO2, P2O5, Al2O3); галогенидные - на основе галогенидов, главным образом BeF2 (фторберилатные стекла) и халькогенидные - на основе сульфидов, селенидов и теллуридов.

Наиболее широко применяются оксидные стекла, которые в зависимости от состава делятся на ряд классов и групп:

  1. по виду окисла стеклообразователя - силикатные, боратные, фосфатные, германатные, алюмосиликатные и др.;

  2. по содержанию щелочных окислов - бесщелочные (могут содержать щелочноземельные оксиды MgO, CaO, BaO и др.) малощелочные; многощелочные.

Физико-химические свойства стекла. Наиболее высокие показатели механических свойств имеют кварцевые и бесщелочные стекла, а наиболее низкие стекла с повышенным содержанием оксидов PbO, Na2O3, K2O. Наибольшей стойкостью к воздействию влаги обладает кварцевое стекло. Гидролитическая стойкость стекол сильно уменьшается при введении в состав стекла щелочных оксидов.

Электрические свойства стекла в сильной степени зависят от их состава. Большинство стекол характеризуются ионной проводимостью. Наиболее сильно понижает электропроводность стекол SiO2 и B2O3. Наименьшую электропроводность имеет кварцевое стекло, а наибольшую высокощелочные. Обычно стекла более химически устойчивые имеют меньшую электропроводность. стекол при невысоких температурах колеблется в пределах от108 до 1015 Ом.м.

Диэлектрические потери в стеклах складываются из потерь проводимости и потерь релаксационных и структурных. tg стекол увеличивается с ростом содержания щелочных оксидов при малом содержании оксидов тяжелых металлов. Стекла с большим содержанием оксидов PbO и BaO имеют низкий tg.

Самую низкую имеет кварцевое стекло (3.7 - 2.8) и стеклообразный борный ангидрид (3.1 - 3.2), у которых наблюдается преимущественно электронная поляризация. При наличии в составе стекол оксидов металлов свинца и бария, обладающих высокой поляризуемостью, стекол увеличивается и становится высокой (порядка20).

В переменном электрическом поле электрическая прочность стекол составляет 17 - 80 МВ/м.

  1. Электротехнические стекла,ситалы.

Электрические свойства стекла в сильной степени зависят от их состава. Большинство стекол характеризуются ионной проводимостью. Наиболее сильно понижает электропроводность стекол SiO2 и B2O3. Наименьшую электропроводность имеет кварцевое стекло, а наибольшую высокощелочные. Обычно стекла более химически устойчивые имеют меньшую электропроводность. стекол при невысоких температурах колеблется в пределах от108 до 1015 Ом.м.

Диэлектрические потери в стеклах складываются из потерь проводимости и потерь релаксационных и структурных. tg стекол увеличивается с ростом содержания щелочных оксидов при малом содержании оксидов тяжелых металлов. Стекла с большим содержанием оксидов PbO и BaO имеют низкий tg.

Самую низкую имеет кварцевое стекло (3.7 - 2.8) и стеклообразный борный ангидрид (3.1 - 3.2), у которых наблюдается преимущественно электронная поляризация. При наличии в составе стекол оксидов металлов свинца и бария, обладающих высокой поляризуемостью, стекол увеличивается и становится высокой (порядка20).

В переменном электрическом поле электрическая прочность стекол составляет 17 - 80 МВ/м.

Ситалл (стеклокристаллический материал) — неорганический материал, получаемый направленной кристаллизацией различных стекол при их термической обработке.

В последние десятилетия (начиная с 1950 годов) создан и используется новый класс материалов — ситаллы (стеклокристаллические материалы), которые отличаются высокими физико-химическими, физико-механическими характеристиками. В зависимости от фаз кристаллизации получаемые материалы ситаллы делятся на: однофазные и многофазные (несколько фаз).

Подбором состава стекла, содержащего в большинстве случаев добавки, ускоряющие объёмную кристаллизацию (катализаторы, нуклеаторы), можно рассчитать соответствующие кристаллические и стекловидную фазы. Кристаллы заранее рассчитанных фаз возникают и растут равномерно по всему объёму в результате термической обработки. Технология производства изделий из ситаллов сходна и мало отличается от производства изделий из стекла. В отдельных случаях изделия можно формовать методами керамической технологии (см. Керамика). Часто для зарождения кристаллов в состав стекла вводят фоточувствительные добавки, активаторы люминесценции и др. Для производства отдельных видов ситаллов используют шлаки (см. Шлакоситаллы).

Стеклокристаллические материалы ситаллы отличаются:

Мелкодисперсной кристаллической структурой с величиной кристаллов до 2000 нм, равномерно распределеных в стеклообразной матрице.

Количество кристаллических фаз в ситаллах может насчитываться порядка 20-95% (по всему объему).

В зависимости отсостав стекла, типа катализатора кристаллизации и режима термической обработки, получают ситаллы с различными кристаллическими фазами и соответственно с различными заданными свойствами.

Ситаллы обладают высокой прочностью, твердостью, изно-состойкостью, малым термическим расширением, химической и термической устойчивостью, газо- и влагонепроницаемостью

Ситаллы бывают:

Технические

Строительные

Технические ситаллы[править]

Основная статья: Технические ситаллы

Технические ситаллы получают на основе систем: Li2O-Al2O3-SiO2, MO-Al203-SiO2, Li2O-МО-А12О3--SiO2, MgO-Al2O3--SiO2-K2O-F; МО-В2О2-А12О3 PbO-ZnO-B2O3-Al2O3-SiO2 и др. По основным свойствам технические ситаллы деляться на: высокопрочные; радиопрозрачные химически стойкие, прозрачные термостойкие, износостойкие и химически стойкие; фотоситаллы; слюдоситаллы; биоситаллы; ситаллоцементы; ситаллоэмали; ситаллы со специальными электрическими свойствами.

Высокопрочные ситаллы[править]

Высокопрочные ситаллы получают главным образом на основе стекол систем MgO-Al2O3-SiO2 (кордиеритовые составы) и Na2O-Al2O3-SiO2 (нефелиновые составы). Для первых инициатором кристаллизации служит ТiO2; у—изгиба для них 240-350 МПа. Ситаллы нефелиновых составов после упрочнения ионообменной обработкой в расплавленных солях калия имеют у—изгиба 1370 МПа. Области применения высокопрочных ситаллов — ракето — и авиастроение (обтекатели антенн), радиоэлектроника.

Прозрачные, термостойкие, износостойкие и химически стойкие

Оптически прозрачные термостойкие, радиопрозрачные, химически стойкие ситаллы получают на основе стекол системы Li2O-Al2 O3-SiO2 (сподумено-эвкриптитовые составы); инициатор кристаллизации-TiO2. В оптически прозрачных ситаллах размер кристаллов не превышает длины полуволны видимого света.

Области применения -космическая и лазерная техника, астрооптика. Введение в состав таких ситаллов активаторов

люминесценции и специальных добавок позволяет применять их в солнечных батареях.

Фотоситаллы

Оптическое стекло на базе фотоситаллов получают на основе стекол системы Li2O-Al2O3-SiO2 со светочувствительными добавками (соединения Аu, Ag, Сu), которые под действием УФ облучения и дальнейшей тепловой обработки стекла способствуют его избирательной кристаллизации. Они находят применение в микроэлектронике, ракетной и космической технике, оптике, полиграфии как светочувствительные материалы (например, для изготовления оптических печатных плат, в качестве светофильтров).

Биоситаллы

Высокая механическая прочность, биологическая совместимость с тканями организма находит применение биоситаллов в медицине для изготовления зубных протезов. Биоситаллы получают на основе стекол системы СаО - MgO - SiO2 - Р2 О5 (апатито - волластонитовые составы).

Ситаллоцементы

Ситаллоцементы получают на основе стекол системы PbO-ZnO-B2O3-SiO. Они имеют весьма низкий коэффициент теплового расширения.

Ситаллоцементы находят применение приспаивания деталей из стекла, цветных кинескопов и электронно-лучевых

трубок, при герметизации полупроводниковых приборов, а также в производстве жидкокристаллических индикаторов и в микроэлектронике. Использование таких ситаллов в качестве стеклокристаллических покрытий (стеклоэмалей), наносимых на поверхность различных металлов (W, Mo, Mb, Та, их сплавов, различных видов стали) находят применение для защиты их от коррозии, окисления и износа в условиях эксплуатации обычных и повышенных температур. Обладая повышенной термо- и жаростойкостью, устойчивостью к истиранию, высокой механической и электрической прочностью ситаллоцементы находят применение в качестве покрытий для деталей дизелей, газотурбинных установок, атомных реакторов, авиационных приборов, электронагревательных элементов и т.д.

  1. Кристаллическое строение металлов (Ме) и их свойства

Для описания атомно-кристал­лической структуры используют понятие кристаллической решетки, являющейся воображаемой пространст­венной сеткой с ионами (атомами) в узлах.

Атомно-кристаллическая структура может быть представлена не ря­дом периодически повторяющихся объемов, а одной элементарной ячейкой. Так называется ячейка, повторяющаяся во всех трех измерениях. Трансля­цией этого наименьшего объема можно полностью воспроизвести структуру кристалла (рис. 1).

В кристалле элементарные частицы (атомы, ионы) сближены до соприкосновения. Для упрощения пространственное изображение принято заменять схемами, где центры тяжести частиц представлены точками. В точках пересечения прямых линий располагаются атомы; точки пересечения называются узлами решетки. Расстояния a, b и c между центрами атомов, находящихся в соседних узлах решетки, называют параметрами, или периодами решетки.

Рис. 1. Кристаллическая решетка

 

Для однозначного описания элементарной ячейки кристаллической решетки необходимо знание величин параметров a, b, c и углов между ними.

В 1848 г. французский ученый Бравэ показал, что изученные трансляционные структуры и элементы симметрии позволяют выделить 14 типов кристаллических решеток.

На рис. 2 показаны три типа элементарных ячеек кристаллических решеток, наиболее характерные для металлов: объемноцентрированная кубическая (ОЦК); гранецентрирован­ная кубическая (ГЦК) и гексагональная плотноупакованная (ГП), а также схемы упаковки в них атомов.

В кубической гранецентрированной решетке (ГЦК; А1) атомы расположены в вершинах куба и в центре каждой грани (рис. 2, б).

В кубической объемноцентрированной решетке (ОЦК; А2) атомы расположены в вершинах куба, а один атом — в центре его объема (рис. 2, а).

В гексагональной плотноупакованной решетке (ГП; А3) атомы расположены в вершинах и центре шестигранных оснований призмы, а три атома — в средней плоскости призмы (рис. 2, в).

Для характеристики кристаллических решеток вводят понятия координационного числа и коэффициента компактности. Координационным числом Iк называется число атомов, находящихся на наиболее близком и равном расстоянии от данного атома. Для ОЦК решетки координационное число равно 8, для решеток ГЦК и ГПУ оно составляет 12. Из этого следует, что решетка ОЦК менее компактна, чем решетки ГЦК и ГПУ. В решетке ОЦК каждый атом имеет всего 8 ближайших соседей, а в решетках ГЦК и ГПУ их 12.

Рис. 2. Типы элементарных ячеек кристаллических решеток металлов и схемы упаковки в них атомов:  а) гранецентрированная кубическая (ГЦК);  б) объемноцентрированная кубическая (ОЦК);  в) гексагональная плотноупакованная (ГП) решетка

 Если принять, что атомы в решетке представляют собой упругие соприкасающиеся шары, то нетрудно видеть, что в решетке, помимо атомов, имеется свободное пространство. Плотность кристаллической решетки, т. е. объем, занятый атомами, характеризуется коэффициентом компактности.

Коэффициент компактности Q равен отношению суммарного объема атомов, входящих в решетку, к объему решетки:

где R — радиус атома (иона); n — базис, или число атомов, приходящихся на одну элементарную ячейку; V — объем элементарной ячейки.

Для простой кубической решетки n = (1/8) · 8 = 1; V = a3 = (2R)3, коэффициент компактности Q = 52 %.

На решетку ОЦК (рис. 3.) приходится два атома: один в центре и один как сумма от долей атомов, находящихся в вершинах куба, так как ячейке принадлежит 1/8 атома от каждого угла. Коэффициент компактности QОЦК = 68 %.

Для ГЦК решётки студентам предлагается проделать аналогичные выводы самостоятельно.

Некоторые металлы при разных температурах могут иметь различную кристаллическую решетку. Способность металла существовать в различных кристаллических формах носит название полиморфизма или аллотропии. Принято обозначать полиморфную модификацию, устойчивую при более низкой температуре, индексом α (α-Fe), при более высокой индексом β, затем γ и т.д.

Известны полиморфные превращения железа: Fea « Feg (a-Fe « g-Fe), титана Tia « Tig  (a-Ti « g- Ti) и других элементов.

Рис.  3. Расчёт числа атомов, приходящихся на одну ОЦК ячейку.

 

Температура превращения одной кристаллической модификации в дру­гую называется температурой полиморфного превращения.

При полиморфном превращении меняются форма и тип кристалли­ческой решетки. Это явление называется перекристаллизацией.Так, при температуре ниже 911°С устойчиво Fea, в интервале 911–1392°С устойчи­во Feg. При нагреве выше 911°С атомы решетки ОЦК перестраиваются, образуя решетку ГЦК. На явлении полиморфизма основана термическая обработка.

При переходе из одной полиморфной формы в другую меняются свой­ства, в частности плотность и соответственно объем вещества. Например, плотность Feg на 3 % больше плотности Fea, а удельный объем соответст­венно меньше. Эти изменения объема необходимо учитывать при термооб­работке.

Полиморфизм олова явился одной из причин гибели полярной экспедиции английского исследователя Р. Скотта. Оловом были запаяны канистры с керосином. При низкой температуре произошло полиморфное превращение пластичного белого олова с образованием хрупкого порошка серого олова. Горючее вылилось и испарилось, и на обратном пути экспедиция осталась без топлива. Превращение белого олова в серое называют «оловянной чумой».

Типы кристаллических решеток важнейших металлических эле­ментов приведены в табл. 1.

 

Таблица 1.

Типы кристаллических решеток важнейших металлических элементов

А. Металлы с одним типом решетки

Тип решетки

Координационное число

Коэффициент  компактности

Металл

ГЦК

12

74

Ag,Au,Pt, Cu,Al,Pb,Ni

ОЦК

8

68

Na, K,V,Nb, Cr, Mo, W

ГП

12

74

Be,Mg,Zn,Cd

Б. Металлы с полиморфным превращением

Металл

Тип решетки

Температура  превращения, °С

Ca

ГЦК ↔ ГП

450

Ce

ГП ↔ГЦК

477

Zr

ГП ↔ОЦК

882

Ti

ГП ↔ОЦК

882

Fe

ОЦК↔ГЦК↔ОЦК

911, 1 392

 

 

 

 

В кристаллических материалах расстояния между ато­мами в разных кристаллографических направлениях различны. Напри­мер, в ОЦК решетке в кристаллографической плоскости, проходящей через грань куба, находится всего один атом, так как четыре атома в вершинах одновременно принадлежат четырем соседним элементарным ячейкам: (1/4) 4 = 1 атом. В то же время в плоскости, проходящей через диагональ куба, будут находиться два атома: 1 + (1/4) 4 = 2.

Из-за неодинаковой плотности атомов в различных направлениях кри­сталла наблюдаются разные свойства. Различие свойств в кристалле в за­висимости от направления испытания называется анизотропией.

Разница в физико-химических и механических свойствах в разных направлениях может быть весьма существенной. При измерении в двух взаимно перпендикулярных направлениях кристалла цинка значения температурного коэффициента линейного расширения различаются в 3–4 раза, а прочности кристалла железа — более, чем в два раза.

Анизотропия свойств характерна для одиночных кристаллов или для так называемых монокристаллов. Большинство же технических литых ме­таллов, затвердевших в обычных условиях, имеют поликристаллическое строение. Они состоят из большого числа кристаллов или зерен (рис. 4, а). При этом каждое отдельное зерно анизотропно. Различная ориентировка отдельных зерен приводит к тому, что в целом свойства поликристалличе­ского металла являются усредненными.

Поликристаллическое тело характеризуется квазиизотропностью — ка­жущейся независимостью свойств от направления испытания. Квази­изотропность сохраняется в литом состоянии, а при обработке давлением (прокат­ке, ковке), особенно, если она ведется без нагрева, большинство зерен ме­талла приобретает примерно одинаковую ориентировку — так называемую текстуру (pиc. 4, б), после чего металл становится анизотропным. Свойства деформированного металла вдоль и поперек направления главной деформации могут существенно различаться. Анизотропия может приводить к дефектам ме­талла (расслоению, волнистости листа). Анизотропию необходимо учитывать при конструировании и разработке технологии получения деталей.

 

Рис. 4. Ориентировка кристаллических решеток: а) в зернах литого металла;  б) после обработки давлением

  1. Дефекты в металлах и влияние их на свойства.

  2. Механические свойства металлов, прочность, пластичность, метолы определения. Твердость, ударная вязкость, методы определения.

Каждая деталь машины или инструмент должны обладать определёнными механическими свойствами (прочностью, пластичностью, упругостью и др.) От этих свойств зависит качество дета­лей, а также обрабатываемость металла. Чтобы убедиться, что деталь удовлетворяет тем требованиям, которые к ней предъявляются, производят механические испытания. Наиболее распространенными являются испытания металла на растяжение, испытание на удар, определение твёрдости, выносливости и жаропрочности.

Прочность и пластичность.

Чтобы определить упругость, прочность и пластичность металла, изготовляют образец, определённой длинны и сечения, устанавливают его в зажимы 2 разрывной машины. Для этих целей чаще всего ис­пользуют машины с гидравлической системой передачи усилия или с вин­товой системой.

Растягивающая сила F создает напряжение в испытываемом об­разце и вызывает его удлинение. Когда напряжение превысит прочность об­разца, он разорвется.

Рис. 6 Определение механических свойств (источник: И.С. Стернин: Машиностроительные материалы)

В результате испытания получают диаграмму растяжения. Из диаграммы видно, что вначале образец удлиняется пропорционально нагрузке.

Прямолинейный участок OA соответствует обратимым, упругим деформациям. При разгрузке образец принимает исходные размеры (этот процесс описывается все тем же прямолинейным участком кривой). Искривленный участок АС соответствует необратимым, пластическим деформациям. При разгрузке (штриховая прямая СВ) образец не возвращается к начальным размерам и сохраняет некоторую остаточную деформацию.

От точки С образец удлиняется без увеличения нагрузки. Горизонтальный участок СМ диаграммы называется площадкой текучести. Напряжение, при котором происходит рост деформаций без увеличения нагрузки, называется пределом текучести.

Твердость определяют сопротивлением материала проникновению в его поверхность стандартного тела (индентора), не деформирующегося при испытании.

Это неразрушающий метод контроля. Основной метод оценки качества термической обработке изделия. О твердости судят либо по глубине проникновения индентора (метод Роквелла), либо по величине отпечатка от вдавливания (методы Бринелля, Виккерса, микротвердости).

Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость.

Рис. 7 Схемы определения твердости: а – по Бринеллю; б – по Роквелла; в – по Виккерса (источник: http://tm.msun.ru/)

Твердость по Бринеллю

Испытание проводят на твердомере Бринелля (рис. 7 а)

В качестве индентора (наконечника) используется стальной закаленный шарик диаметром D 2,5; 5; 10 мм, в зависимости от толщины изделия.

Нагрузка Р, в зависимости от диаметра шарика и измеряемой твердости: для термически обработанной стали и чугуна – P= 30D2, литой бронзы и латуни – P= 10D2 , алюминия и других очень мягких металлов – P= 2,5D2. Продолжительность выдержки : для стали и чугуна – 10 с, для латуни и бронзы – 30 с.

Полученный отпечаток измеряется в двух направлениях при помощи лупы Бринелля.

Твердость определяется как отношение приложенной нагрузки Р к сферической поверхности отпечатка F:

Стандартными условиями являются D = 10 мм; Р = 3000 кгс; = 10 с. В этом случае твердость по Бринеллю обозначается НВ 250, в других случаях указываются условия: НВ D / P /, НВ 5/ 250 /30 – 80.

Твердость по Роквеллу

Этот метод основан на вдавливании в поверхность наконечника под определенной нагрузкой. (рис. 7 б)

Индентор для мягких материалов (до НВ 230) – стальной шарик диаметром 1/16” ( 1,6 мм), для более твердых материалов – конус алмазный.

Нагружение осуществляется в два этапа. Сначала прикладывается предварительная нагрузкаP0(10 кгс) для плотного соприкосновения наконечника с образцом. Затем прикладывается основная нагрузка Р1, в течении некоторого времени действует общая рабочая нагрузка Р. После снятия основной нагрузки определяют значение твердости по глубине остаточного вдавливания наконечника h под нагрузкой P0.

В зависимости от природы материала используют три шкалы твердости:

Таблица.1 Шкалы для определения твердости по Роквеллу

Шкала

Обозначение

Индентор

Нагрузка, кг

Область применения

P0

P1

P2

A

HRA

Алмазный конус ≤1200

10

50

60

Для особо твёрдых материалов

B

HRB

Стальной закалённый шарик Ø1/16”

10

90

100

Для относительно мягких материалов

C

HRC

Алмазный конус ≤1200

 

10

140

150

Для относительно твёрдых материалов

 

Твердость по Виккерсу

В качестве индентора используется алмазная четырехгранная пирамида с углом при вершине 136º.

Твердость рассчитывается как отношение приложенной нагрузки P к площади поверхности отпечатка F:

Нагрузка Р составляет 5…100 кгс. Диагональ отпечатка d измеряется при помощи микроскопа, установленного на приборе.

Преимущество данного способа в том, что можно измерять твердость любых материалов, тонкие изделия, поверхностные слои. Высокая точность и чувствительность метода.

Способ микротвердости – для определения твердости отдельных структурных составляющих и фаз сплава, очень тонких поверхностных слоев (сотые доли миллиметра). Аналогичен способу Виккерса. Индентор – пирамида меньших размеров, нагрузки при вдавливании Р составляют 5…500 гс.

Испытание металлов на износ проводят на образцах в лабораторных условиях, а деталей - в условиях реальной эксплуатации. При испытаниях образцов моделируются условия трения, близкие к реальным. Величину износа образцов или деталей определяют различными способами: измерением размеров, взвешиванием образцов и другими методами.

Механические свойства и методы их определения

Механические свойства материалов определяют на специальных образцах.

Наиболее распространенными механическими характеристиками являются: твердость , пределы прочности и упругости , ударная вязкость

Испытания выполняются на раз­рывных машинах с использованием специальных образцов. Деформация может быть упругой или пластической . Упругая деформация полностью снимается (исчезает) после снятия нагрузки. Пластическая деформация не исчезает после снятия нагрузки (согните алюминиевую проволоку, после того как нагрузка снята, проволока не разгибается — она пластически деформирована).

При этом определяются: предел прочности (sв) — напряжение, при котором происходит разрушение образца

Определение твердости

Твердость характеризует сопротивление материала большим пластическим деформациям.

Наиболее распространенные методы определения твердости связаны с внедрением специального тела, называемого индентором, в испытуемый материал с таким усилием, чтобы в материале остался отпечаток индентора.

Метод Бринелля (НВ )

Вдавливание шарика происходит при постоянной нагрузке, в результате на поверхно­сти образца образуется отпечаток в виде сферической лунки.

Диаметр отпечатка измеряется в двух взаимно перпендикулярных направлениях с помощью микроскопа Бринелля — это лупа со шкалой.

Метод Роквелла

Принципиальное отличие этого метода от рассмотренного ранее заключается в том, что твердость определяется не площадью поверхности отпечатка индентора, а глубиной его проникновения в исследуемый образец.

В качестве индентора используют алмазный конус при испытаниях твердых материалов и стальной закаленный шарик при испытаниях мягких материалов. Значения твердости обозначаются:HRC — алмазный конус, нагрузка 150 кгс; HRA — алмазный конус, нагрузка 60 кгс; HRB — шарик (например, 90 HRA). Шкала по измерению твердости HRC изменена в связи с изменением эталона, поэтому в измеряемые значения следует вносить поправку.

Значения твердости в единицах HRC примерно в 10 раз меньше, чем в единицах НВ, т.е. твердость 30 HRC примерно соответ­ствует 300НВ.

Метод Виккерса

Метод основан на вдавливании четырехгранной алмазной пирамидки с углом между противоположными гранями, равным 136°. Твердость (она обозначается HV ) определяется отношением нагрузки к площади поверхности отпечатка.

Значения твердости по Бринеллю и Виккерсу практически равны.

Метод Шора .

При измерении твердости по Шору груз вместе с укрепленным на нем индентором (обычно это стальной шарик) падает с высоты на образец перпендикулярно его поверхности. Твердость по Шору определяется по высоте отскока шарика(груз с инден­тором).

Определение ударной вязкости и вязкости разрушения

Для определения ударной вязкости используют образцы с надрезом, который служит концентратором напряжений. Образец устанавливают на маятниковом копре так, чтобы удар маятника происходил против надреза, раскрывая его. Маятник поднимают на высоту, при падении он разрушает образец, поднимаясь на высоту(так как часть запасенной при подъеме работы тратится на разрушение образца).

Ударная вязкость — это относительная работа разрушения, т.е. работа, отнесенная к площади образца до разрушения. Вязкость разрушения. Более полную информацию о вязкости металлов дают испытания на вязкости разрушения.

  1. Сплавы, структурные составляющие, кривые охлаждения. Диаграмма состояния сплава, метод построения.

Многие считают, что для оценки свойств сплавов достаточно знать их химический состав. Но это не совсем так. Например, многие сплавы после термообработки становятся намного прочнее, хотя химсостав при этом не меняется. И, наоборот, небольшое изменение химического состава сплава может вызвать непропорционально большое изменение его механических или технологических свойств.

На самом деле важно знать, каким образом составляющие компоненты присутствуют в сплаве, а для этого надо знать его фазовый состав. Можно считать, что химический состав определяет возможные свойства, а фактические свойства определяются фазовым сос3.