Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Гистология

.pdf
Скачиваний:
10017
Добавлен:
31.03.2015
Размер:
45.04 Mб
Скачать

Средние лимфоциты составляют около 10—12 % лимфоцитов крови человека. Ядра этих клеток округлые, иногда бобовидные с пальцевидным впячиванием ядерной оболочки. Хроматин более рыхлый, ядрышко хорошо выражено. В цитоплазме расположены удлиненные канальцы гранулярной эндоплазматической сети, элементы агранулярной сети, свободные рибосомы и полисомы, лизосомы. Центросома и аппарат Гольджи расположены рядом с областью инвагинации кариолеммы.

Кроме типичных лимфоцитов, в крови человека в небольшом количестве могут встречаться лимфоплазмоциты (около 1—2 %), которые отличаются концентрическим расположением вокруг ядра канальцев гранулярной эндоплазматической сети.

Основной функцией лимфоцитов является участие в иммунных реакциях. Однако популяция лимфоцитов гетерогенна по характеристике поверхностных рецепторов и роли в реакциях иммунитета.

Среди лимфоцитов различают три основных функциональных класса: В- лимфоциты, Т-лимфоциты и нулевые лимфоциты.

В-лимфоциты впервые были обнаружены в фабрициевой сумке птиц (bursa Fabricius), поэтому и получили соответствующее название. Они образуются у эмбриона человека из стволовых клеток — в печени и костном мозге, а у взрослого — в костном мозге. В-лимфоциты составляют около 30 % циркулирующих лимфоцитов. Их главная функция — участие в выработке антител, т.е. обеспечение гуморального иммунитета. Плазмолемма В- лимфоцитов содержит множество иммуноглобулиновых рецепторов. При действии антигенов В-лимфоциты способны к пролиферации и дифференцировке в плазмоциты — клетки, способные синтезировать и секретировать защитные белки — и м м у н о г л о б у л и н ы (Ig), которые поступают в кровь, обеспечивая гуморальный иммунитет.

Т-лимфоциты, или тимусзависимые лимфоциты, образуются из стволовых клеток костного мозга, а созревают в тимусе (вилочковая железа), что и обусловило их название. Они преобладают в популяции лимфоцитов, составляя около 70 % циркулирующих лимфоцитов. Для Т-клеток, в отличие от В-лимфоцитов, характерен низкий уровень поверхностных иммуноглобулиновых рецепторов в плазмолемме. Но Т-клетки имеют специфические рецепторы, способные распознавать и связывать антигены, участвовать в иммунных реакциях. Основными функциями Т-лимфоцитов являются обеспечение реакций клеточного иммунитета и регуляция гуморального иммунитета (стимуляция или подавление дифференцировки В-лимфоцитов). Т-лимфоциты способны к выработке л и м ф о к и н о в , которые регулируют деятельность В-лимфоцитов и других клеток в иммунных реакциях. Среди Т-лимфоцитов выявлено несколько функциональных групп: Т-хелперы, Т-супрессоры, Т-киллеры. Подробную характеристику В-лимфоцитов и различных групп Т-лимфоцитов, их участие в реакциях иммунитета — см. в главе XV (иммунная система). Нулевые лимфоциты не имеют поверхностных маркеров на плазмолемме, характерных для В- и Т-лимфоцитов. Их расценивают как резервную популяцию недифференцированных лимфоцитов.

В настоящее время оценка иммунного статуса организма в клинике проводится с помощью иммунологических и иммуноморфологических методов выявления различных видов лимфоцитов.

Продолжительность жизни лимфоцитов варьирует от нескольких недель до нескольких лет. Т-лимфоциты являются «долгоживущими» (месяцы и

172

годы) клетками, а В-лимфоциты относятся к «короткоживущим» (недели и месяцы).

Для Т-лимфоцитов характерно явление рециркуляции, т.е. выход из крови в ткани и возвращение по лимфатическим путям снова в кровь. Таким образом они осуществляют иммунологический надзор за состоянием всех органов, быстро реагируя на внедрение чужеродных агентов.

Среди клеток, имеющих морфологию малых лимфоцитов, следует назвать циркулирующие стволовые клетки крови (СКК), которые поступают в кровь из костного мозга. Впервые эти клетки были описаны А.А.Максимовым и обозначены им как «подвижный мезенхимный резерв». Из СКК, поступающих в кроветворные органы, дифференцируются различные клетки крови, а из СКК, поступающих в соединительную ткань, — тучные клетки, фибробласты и др.

Моноциты (monocytus). В капле свежей крови эти клетки лишь немного крупнее других лейкоцитов (9—12 мкм), в мазке крови они сильно распластываются по стеклу и размер их достигает 18—20 мкм. В крови человека количество моноцитов колеблется в пределах 6—8 % от общего числа лейкоцитов.

Ядра моноцитов разнообразной и изменчивой конфигурации: встречаются бобовидные, подковообразные, редко — дольчатые ядра с многочисленными выступами и углублениями. Гетерохроматин рассеян мелкими зернами по всему ядру, но обычно в больших количествах он располагается под ядерной мембраной. В ядре моноцита содержится одно или несколько маленьких ядрышек (см. рис. 63; рис. 73).

Цитоплазма моноцитов менее базофильна, чем цитоплазма лимфоцитов. При окраске по методу Романовского — Гимзы она имеет бледно-голу- бой цвет, но по периферии окрашивается несколько темнее, чем около ядра; в ней содержится различное количество очень мелких азурофильных зерен (лизосом).

Характерны наличие пальцеобразных выростов цитоплазмы и образование фагоцитарных вакуолей. В цитоплазме расположено множество пиноцитозных везикул. Имеются короткие канальцы гранулярной эндоплазматической сети, а также небольшие по размеру митохондрии. Моноциты относят-

ся к м а к р о ф а г и ч е с к о й

системе организма, или к так

называе-

мой м о н о н у к л е а р н о й

ф а г о ц и т а р н о й с и с т е м е (МФС).

Клетки

этой системы характеризуются происхождением из промоноцитов костного мозга, способностью прикрепляться к поверхности стекла, активностью пиноцитоза и иммунного фагоцитоза, наличием на мембране рецепторов для иммуноглобулинов и комплемента. Моноциты циркулирующей крови представляют собой подвижный пул относительно незрелых клеток, находящихся на пути из костного мозга в ткани. Время пребывания моноцитов в крови варьирует от 36 до 104 ч.

Моноциты, выселяющиеся в ткани, превращаются в макрофаги, при этом у них появляются большое количество лизосом, фагосом, фаголизосом (рис. 74).

Кровяные пластинки

Кровяные пластинки, тромбоциты (thrombocytus), в свежей крови человека имеют вид мелких бесцветных телец округлой, овальной или верете-

173

В кровяных пластинках имеется две системы к а н а л ь ц е в и трубочек, хорошо видных в гиаломере при электронной микроскопии. Первая — это открытая система каналов, связанная, как уже отмечалось, с инвагинациями плазмолеммы. Через эту систему выделяется в плазму содержимое гранул кровяных пластинок и происходит поглощение веществ. Вторая — это так называемая плотная тубулярная система, которая представлена группами трубочек с электронно-плотным аморфным материалом. Она имеет сходство с гладкой эндоплазматической сетью, образуется в аппарате Гольджи. Плотная тубулярная система является местом синтеза циклоксигеназы и простагландинов. Кроме того, эти трубочки селективно связывают двухвалентные катионы и являются резервуаром ионов Са2+. Вышеназванные вещества являются необходимыми компонентами процесса свертывания крови.

Выход Са2+ из трубочек в цитозоль необходим для обеспечения функционирования кровяных пластинок (адгезия, агрегация и др.). Циклооксигеназа метаболизирует арахидоновую кислоту и образование из нее простагландинов и тромбоксана Aj, которые секретируются из пластинок и стимулируют их агрегацию в процессе коагуляции крови.

При блокаде циклооксигеназы (ацетилсалициловой кислотой и др.) агрегация тромбоцитов тормозится, что используют в медицинской практике для профилактики образования тромбов.

В грануломере выявлены органеллы, включения и специальные гранулы. Органеллы представлены рибосомами (в молодых пластинках), элементами эндоплазматической сети аппарата Гольджи, митохондриями, лизосомами, пероксисомами. Имеются включения гликогена и ферритина в виде мелких гранул.

Специальные гранулы в количестве 60—120 составляют основную часть грануломера и представлены двумя главными типами. Первый тип: а-гра- нулы — это самые крупные (300—500 нм) гранулы, имеющие мелкозернистую центральную часть, отделенную от окружающей мембраны небольшим светлым пространством. Они содержат различные белки и гликопротеины, принимающие участие в процессах свертывания крови, факторы роста, литические ферменты.

К наиболее важным б е л к а м , секретируемым при

активации тромбоцитов,

относятся фактор пластинок 41, p-тромбоглобин, фактор

фон Виллебранда, фиб-

риноген, факторы роста (тромбоцитарный PDGF, трансформирующий TGFp), фактор свертывания — тромбопластин; к г л и к о п р о т е и н а м относятся фибронектин и тромбоспондин, играющие важную роль в процессах адгезии тромбоцитов. К белкам, связывающим гепарин (разжижает кровь, препятствует свертыванию), относятся фактор 4 и р-тромбоглобулин.

Кроме того, в а-гранулах содержатся литические ферменты, характерные для лизосом, — кислая фосфатаза, катепсин, р-глюкуронидаза.

Второй тип гранул — 5-гранулы (дельта-гранулы) — представлен плотными тельцами размером 250—300 нм, в которых имеется эксцентрично расположенная плотная сердцевина, окруженная мембраной. Между криптами хорошо выражено светлое пространство. Главными компонента-

1 Факторы свертывания крови, находящиеся в пластинках, обозначают арабскими цифрами 1, 2, 3 и т.д.

177

ми гранул являются серотонин, накапливаемый из плазмы, и другие биогенные амины (гистамин, адреналин), Са2+, АДФ, АТФ в высоких концентрациях.

Кроме того, имеется третий тип мелких гранул (200—250 нм), представленный лизосомами (иногда называемыми ^-гранулами), содержащими лизосомные ферменты, а также микропероксисомами, содержащими фермент пероксидазу.

Содержимое гранул при активации пластинок выделяется по открытой системе каналов, связанных с плазмолеммой.

Основная функция кровяных пластинок — участие в процессе свер- т ы в а н и я крови — защитной реакции организма на повреждение и предотвращение потери крови. В тромбоцитах содержится около 12 факторов, участвующих в свертывании крови. При повреждении стенки сосуда пластинки быстро агрегируют, прилипают к образующимся нитям фибрина, в результате чего формируется тромб, закрывающий рану. В процессе тромбообразования наблюдается несколько этапов с участием многих компонентов крови.

На п е р в о м э т а п е происходят скопление тромбоцитов и выход физиологически активных веществ; на в т о р о м э т а п е — коагуляция и остановка кровотечения (гемостаз). Этот этап имеет 3 основные фазы изменений. В п е р в о й ф а з е происходит образование активного тромбопластина из тромбоцитов (внутренний фактор) и из тканей сосуда (внешний фактор), во в т о р о й — образование под влиянием тромбопластина из неактивного протромбина активного тромбина. В т р е т ь е й ф а з е под влиянием тромбина из фибриногена образуется фибрин. Фибрин формирует нити с поперечной исчерченностью (толщина полос 25 нм). Для всех фаз свертывания крови необходим Са2+. Наконец, на последнем третьем этапе наблюдается ретракция кровяного сгустка, связанная с сокращением нитей актина в отростках тромбоцитов и нитей фибрина. Рассасывание тромба (фибринолиз) происходит под влиянием ферментов антисвертывающих систем крови. В гиаломере кровяных пластинок, помимо актина, содержится фактор ретракции кровяного сгустка.

Морфологически на первом этапе происходит адгезия тромбоцитов на базальной мембране и на коллагеновых волокнах поврежденной сосудистой стенки, в результате которой образуются отростки тромбоцитов и на их поверхность из пластинок через систему трубочек выходят гранулы, содержащие тромбопластин. Он активирует реакцию превращения протромбина в тромбин, а последний влияет на образование из фибриногена фибрина. Затем в сгусток, состоящий из тромбоцитов и фибрина, проникают фибробласты и капилляры и происходят замещение сгустка соединительной тканью и его ретракция.

При ретракции сгустка сокращается его объем до 10 % от первоначального, изменяется форма пластинок (дисковидная становится шаровидной), наблюдаются разрушение пограничного пучка микротрубочек, полимеризация актина, появление многочисленных миозиновых филаментов, формирование актомиозиновых комплексов, обеспечивающих сокращение сгустка. Отростки активированных пластинок вступают в контакт с нитями фибрина и втягивают их в центр тромба. В организме существуют и противосвертывающие системы. Известно, что мощным антикоагулянтом является гепарин, вырабатываемый тучными клетками. Уменьшение свертывания крови отмечаются при ряде заболеваний. Усиление свертывания крови обусловливает образование тромбов в кровеносных сосудах, например при атеросклерозе, когда изменены рельеф и целостность эндотелия. Уменьшение числа тромбоцитов (тромбоцитопения) приводит к снижению свертываемости крови и кровотечениям.

178

При наследственном заболевании гемофилии имеют место дефицит и нарушение образования фибрина из фибриногена.

Важной функцией тромбоцитов является их участие в метаболизме серотонина. Тромбоциты — это практически единственные элементы крови, в которых из плазмы накапливаются резервы серотонина. Связывание тромбоцитами серотонина происходит с помощью высокомолекулярных факторов плазмы крови и двухвалентных катионов с участием АТФ.

В процессе свертывания крови из разрушающихся тромбоцитов высвобождается серотонин, который действует на сосудистую проницаемость и сокращение гладкомышечных клеток сосудов. Серотонин и продукты его метаболизма обладают противоопухолевым и радиозащитным действием. Торможение связывания серотонина тромбоцитами обнаружено при ряде заболеваний крови — злокачественном малокровии, тромбоцитопенической пурпуре, миелозах и др.

Продолжительность жизни тромбоцитов — в среднем 9—10 дней. Стареющие тромбоциты фагоцитируются макрофагами селезенки. Усиление разрушающей функции селезенки может быть причиной значительного снижения числа тромбоцитов в крови (тромбоцитопения). Для устранения этого требуется операция — удаление селезенки (спленэктомия).

При снижении числа кровяных пластинок, например при кровопотере, в крови накапливается тромбопоэтин — гликопротеид, стимулирующий образование пластинок из мегакариоцитов костного мозга.

Гемограмма. Лейкоцитарная формула

В медицинской практике анализ крови играет большую роль. При клинических анализах исследуют химический состав крови, определяют количество эритроцитов, лейкоцитов, гемоглобина, резистентность эритроцитов, быстроту их оседания — скорость оседания эритроцитов (СОЭ) и др. У здорового человека форменные элементы крови находятся в определенных количественных соотношениях, которые принято называть гемограммой, или формулой крови. Важное значение для характеристики состояния организма имеет так называемый дифференциальный подсчет лейкоцитов. Определенные процентные соотношения лейкоцитов называют лейкоцитарной формулой.

Возрастные изменения крови

Число эритроцитов в момент рождения и в первые часы жизни выше, чем у взрослого человека, и достигает 6,0—7,0 • 1012/л. К 10—14 сут оно равно тем же цифрам, что и во взрослом организме. В последующие сроки происходит снижение числа эритроцитов с минимальными показателями на 3— 6-м месяце жизни (физиологическая анемия). Число эритроцитов становится таким же, как и во взрослом организме, в период полового созревания. Для новорожденных характерно наличие анизоцитоза (разнообразие размеров) с преобладанием макроцитов, увеличенное содержание ретикулоцитов, а также присутствие незначительного числа ядросодержащих предшественников эритроцитов.

Число лейкоцитов у новорожденных увеличено и достигает 10,0—30,0 • 109/л. В течение 2 нед после рождения число их падает до 9,0—15,0 • 109/л. Количе-

179

ство лейкоцитов достигает к 14—15 годам уровня, который сохраняется у взрослого. Соотношение числа нейтрофилов и лимфоцитов у новорожденных такое же, как и у взрослых 4,5—9,0 109/л. В последующие сроки содержание лимфоцитов возрастает, а нейтрофилов падает, и, таким образом, к 4-м суткам количество этих видов лейкоцитов уравнивается (первый фи - з и о л о г и ч е с к и й перекрест лейкоцитов). Дальнейший рост числа лимфоцитов и падение нейтрофилов приводят к тому, что на 1—2-м году жизни лимфоциты составляют 65 %, а нейтрофилы — 25 %. Новое снижение числа лимфоцитов и повышение нейтрофилов приводят к выравниванию обоих показателей у 4-летних детей (второй ф и з и о л о г и ч е с к и й перекрест). Постепенное снижение содержания лимфоцитов и повышение нейтрофилов продолжаются до полового созревания, когда количество этих видов лейкоцитов достигает нормы взрослого.

Лимфа

Лимфа (лат. lympha — влага) представляет собой слегка желтоватую жидкость белковой природы, протекающую в лимфатических капиллярах и сосудах. Она состоит из лимфоплазмы (plasma lymphae) и форменных элементов. По химическому составу лимфоплазма близка к плазме крови, но содержит меньше белков. Среди фракций белка альбумины преобладают над глобулинами. Часть белка составляют ферменты — диастаза, липаза и гликолитические ферменты. Лимфоплазма содержит также нейтральные жиры, простые сахара, NaCl, Na2C03 и др., а также различные соединения, в состав которых входят кальций, магний, железо.

Ф о р м е н н ы е э л е м е н т ы л и м ф ы представлены главным образом лимфоцитами (98 %), а также моноцитами и другими видами лейкоцитов, иногда в ее составе обнаруживаются эритроциты. Лимфа накапливается в лимфатических капиллярах тканей и органов, куда под влиянием различных факторов, в частности осмотического и гидростатического давления, из тканей постоянно поступают различные компоненты лимфоплазмы. Из капилляров лимфа перемещается в периферические лимфатические сосуды, по ним — в лимфатические узлы, затем в крупные лимфатические сосуды и вливается в кровь. Состав лимфы постоянно меняется. Различают лимфу п е р и ф е р и ч е с к у ю (до лимфатических узлов), п р о м е ж у т о ч н у ю (после прохождения через лимфатические узлы) и ц е н т р а л ь н у ю (лимфу грудного и правого лимфатического протоков). Процесс лимфообразования тесно связан с поступлением воды и других веществ из крови в межклеточные пространства и образованием тканевой жидкости.

Кроветворение (гемопоэз)

Гемопоэзом (haemopoesis) называют развитие крови. Различают эмбриональный гемопоэз, который происходит в эмбриональный период и приводит к развитию крови как ткани, и постэмбриональный гемопоэз, который представляет собой процесс физиологической регенерации крови.

180