Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Москатов Electronic_technics_3.pdf
Скачиваний:
102
Добавлен:
02.04.2015
Размер:
1.96 Mб
Скачать

145Москатов Е. А. Электронная техника. Начало. http://moskatov.narod.ru

При температуре свыше примерно +60 °C происходит необратимая деградация жидких кристаллов, приводящая к невозможности получения изображения. При температуре ниже ориентировочно – 10 °C жидкие кристаллы перманентно уменьшают подвижность и от этого время отклика существенно возрастает. После увеличения температуры до уровня комнатной время отклика жидкокристаллического дисплея возрастает незначительно. Таким образом, даже после повышения температуры жидкокристаллический дисплей начнѐт искажать изображения, на которых будут быстрые смены кадров.

Следовательно, для сохранения эксплуатационных качеств нельзя допускать переохлаждение и недопустимое повышение температуры жидкокристаллических дисплеев и индикаторов.

10.4. Плазменные панели

Плазменной панелью называют устройство, которое преобразует видеосигнал в изображение на экране, синтез которого обусловлен свечением люминофора под действием ионизации разреженного газа, вызванной холодной плазмой. Пиксель цветной плазменной панели состоит из трѐх герметичных отсеков. Каждый отсек заполнен инертным газом и покрыт специальным флюоресцирующим люминофором. В каждый отсек подведены электроды, при приложении к которым переменного напряжения прямоугольной формы амплитудой в несколько киловольт происходит ионизация инертного газа и возникает плазменный разряд. При электрическом пробое газа напряжение между электродами существенно уменьшается до 100 В … 250 В. Плазма порождает ультрафиолетовое излучение, подпадающее на люминофор, которым покрыта стенка отсека, и вызывает его свечение в видимом спектре. Свечение люминофоров в каждом пикселе плазменной панели возможно красного, синего и зелѐного цветов. Шины питания и шины от электродов в отсеках,

146Москатов Е. А. Электронная техника. Начало. http://moskatov.narod.ru

образуют прямоугольную сетку, а пиксели расположены в еѐ перекрестиях. Выводы с той стороны отсеков, которую будет обозревать пользователь, должны быть прозрачными. Чтобы токопроводящие шины были не заметны пользователю, их выполняют из почти прозрачной медно-хромовой или оловянно-хромовой плѐнки, нанесѐнной на стеклянную плиту [104].

Достоинства плазменных панелей: угол обзора до 170°, яркость до 3000 кд / м2, контрастность до 30000:1, диагональ до 500 дюймов, почти на порядок ниже вероятность возникновения брака во время изготовления по сравнению с электронно-лучевыми трубками, а также незначительное мерцание изображения [104]. В течение первых нескольких лет эксплуатации плазменные панели обычно обладают более точной цветопередачей, чем жидкокристаллические дисплеи, но меньшей, чем у дисплеев с электронно-лучевыми трубками. Время отклика плазменной матрицы меньше, чем у жидкокристаллической матрицы. Плазменные матрицы, в отличие от элек- тронно-лучевых трубок, не чувствительны к наличию магнитных полей, например, порождѐнных магнитными системами динамических головок акустических систем.

Недостатки: большая потребляемая мощность, выгорание люминофора после нескольких лет непрерывной эксплуатации, невозможность выполнения пикселей меньше 0,2×0,2×0,1 мм из-за неустойчивого возникновения плазмы [104]. Время отклика плазменной матрицы больше, чем у электронно-лучевой трубки.

10.5. Органические светодиодные дисплеи

Органические светодиодные устройства (OLED) выполняют на основе многослойных токопроводящих люминесцирующих сопряжѐнных полимеров, например, полифениленвинилена. На прозрачной подложке расположен анод, выполненный из In4Sn3O12 обычно методом золь-гель технологии, к которому подсоединяют положи-

147Москатов Е. А. Электронная техника. Начало. http://moskatov.narod.ru

тельный полюс источника питания. Отрицательный полюс источника питания подключают к катоду, изготовленному из алюминия. Между анодом и катодом располагают эмиссионный материал. Между катодом и эмиссионным материалом возникают слои инжекции электронов и переноса электронов. Между анодом и эмиссионным материалом будут расположены слои переноса дырок и инжекции дырок. Протекание тока обусловлено движениями дырок из анода и электронов из катода в эмиссионный слой, где происходит рекомбинация, сопровождаемая эмиссией фотонов. Органические светодиоды объединяют в группы – пиксели, в которых излучения эмиссионных слоѐв попадают на светофильтры красного, синего и зелѐного цветов. При обратном включении источника питания не возникает выделения фотонов в эмиссионном слое.

Выводы органических светодиодов могут быть составлены в прямоугольную сетку, подавая напряжения на строки и столбцы которой, инициируют свечение требуемых пикселей. Дисплеи, организованные по такому принципу, называют пассивными. Диагональ пассивных дисплеев обычно не превышает 10 дюймов. В активных дисплеях каждый органический светодиод соединѐн с соответствующим транзистором, расположенным рядом с ним, и управление транзистором требует затрат небольшой мощности. Диагональ активных дисплеев может достигать десятков дюймов, однако стоимость изготовления активных дисплеев выше, чем пассивных. Таким образом, получают элементарные органические светодиоды, объединяя которые получают органические светодиодные дисплеи.

Достоинства: отсутствие необходимости подсветки, угол обзора в 180°, весьма точная цветопередача, малые масса и габариты. Также допустимо изготовление гибких дисплеев и дисплеев с толщиной всего в несколько миллиметров.

Недостатки: деградация пикселей при прямом попадании солнечного света, выход из строя люминофоров синего цвета через примерно тысячу часов непрерывной работы.

148Москатов Е. А. Электронная техника. Начало. http://moskatov.narod.ru

10.6. Дисплеи на углеродных нанотрубках

Углеродной нанотрубкой именуют образование, имеющее длину от нескольких десятков нанометров до нескольких десятков миллиметров, похожее на полую трубу радиусом примерно в несколько нанометров, у которой стенки сформированы углеродом и обладают толщиной всего в один атом. Углеродные молекулы нанотрубок, имеющие сферическую форму, называют фуллеренами, а имеющие форму длинных трубок, концы которых имеют окончание в виде гладких полусфер, именуют тубеленами.

В вакууме, когда тубелены, длиной около десятка нанометров, с острыми, а не полусферическими, концами будут помещены в электрическое поле, на них возможно возникновение автоэлектронной эмиссии. Нанотрубки размещают на подложке, выполненной обычно из кварца или кремния, в вакууме под давлением 1,32 · 10–10 атм. Плотность тока эмиссии катодов достигает 4 мА / см2. Нанотрубки размещают в виде матрицы. Излучение нанотрубок попадает на три люминофора, которые начинают светиться красным, синим и зелѐным. Этот свет с видимым глазом человека спектром проникает через прозрачную, чаще всего стеклянную пластину, который и воспринимает пользователь.

Выполненные таким образом цветные панели и дисплеи на углеродных нанотрубках обладают высокой механической прочностью, высокой яркостью вплоть до 8000 кд / м2, углом обзора до 160°, высоким быстродействием и возможностью непрерывной работы в течение многих тысяч часов [194, с. 156]. Нанотрубки, кроме того, применяют для изготовления светодиодов, транзисторов, процессоров, прозрачных электродов, люминесцентных ламп и прочих, которые могут работать в условиях радиации. Теоретически возможно создание компонентов на нанотрубках, выдерживающих нагрев до

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]