Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КСЕ.doc
Скачиваний:
44
Добавлен:
09.04.2015
Размер:
633.34 Кб
Скачать

7.2. Термодинамические законы

Итак, всякая термодинамическая система в любом состоянии обладает внутренней энергией - энергией теплового (поступательного, вращательного и колебательного) движения молекул и потенциальной энергии их взаимодействия.

Возможны два способа изменения внутренней энергии: путем совершения работы и путем теплообмена.

Известно, что в процессе превращения энергии выполняется закон сохранения энергии. Поскольку тепловое движение тоже механическое (только не направленное, а хаотическое), то при всех превращениях должен выполняться закон сохранения энергии. В этом заключается качественная формулировка закона для термодинамической системы – первое начало термодинамики. Его формулировка: количество теплоты Q сообщенное системе, идет на увеличение внутренней энергии системы и на совершении системой работы А, т.е.

или

7.3. Энтропия

Энтропия является количественной характеристикой, определяющий характер процессов (равновесный, неравновесный), направление протекания (обратимый, необратимый) и вероятность процессов. Энтропия характеризует меру разупорядоченности системы.

Поскольку тепловое движение молекул является хаотичным, беспорядочным, то с помощью энтропии можно определить степень молекулярного беспорядка (хаоса).

С другой стороны, степень разупорядоченности системы можно характеризовать так называемой термодинамической вероятностью состояния (статистическим весом) W.

Термодинамическая вероятность (W) – это число различных способов, которыми может быть осуществлено данное состояние W1. Однако пользоваться термодинамической вероятностью для количественной оценки направленности протекания процессов неудобно, так как в случае нескольких систем необходимо прибегать к перемножению вероятностей. Удобнее, если бы удалось ограничится суммированием каких-то величин. Такой величиной и является энтропия, которую можно математически выразить через термодинамическую вероятность следующим образом:

Свойства энтропии:

1) если движение системы абсолютно упорядочено, то W=1 и S=0;

2) энтропия изолированной системой не может быть <0, поскольку в этом случае не может быть меньше единицы термодинамическая вероятность;

3) при необратимых процессах энтропия возрастает. Действительно, если, например, рассмотреть процесс расширения газа в пустоту, то при этом число способов которыми может быть осуществлено новое состояние больше, чем прежнее, т.е. , а поэтому;

4) уменьшаться энтропия может только в случае неизолированной системы.

7.4. Второе начало термодинамики

Второе начало термодинамики определяет направление протекания происходящих в природе процессов. Его можно сформулировать несколькими способами.

Наиболее очевидная формулировка второго начала принадлежит Клаузиусу: теплота не может сама собой переходить от тела, менее нагретого, к телу более нагретому.

Второе начало, записанное в дифференциальной форме, постулирует существование дифференциала энтропии (dS) и является его определением: .