Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
183
Добавлен:
10.04.2015
Размер:
275.28 Кб
Скачать

Резиновые и клеящие материалы

Резиной (от латинского resina – смола) называется продукт специальной обработки (вулканизации) смеси каучука и серы с различными добавками (наполнители, пластификаторы, активаторы вулканизации, антиоксиданты и др.).

Резина как технический материал отличается от других материалов высокими эластическими свойствами, которые присущи каучуку. Она способна к очень большим деформациям (относительное удлинение достигает 1000 %), которые почти полностью обратимы.

Кроме отмеченных особенностей, для резиновых материалов характерны высокая стойкость к истиранию, газо- и водонепроницаемость, химическая стойкость, электроизолирующие свойства и небольшая плотность.

Основой всякой резины служит каучук натуральный (НК) или синтетический (СК), который и определяет основные свойства резинового материала. Для улучшения физико-механических свойств каучуков вводятся различные добавки (ингредиенты).

Механические свойства резины (прочность при растяжении, напряжение при заданном относительном удлинении, твердость, износостойкость, усталостная выносливость и др.) в значительной степени зависят от состава резиновой смеси.

Резину подразделяют на две группы:

  1. Резины общего назначения, применяемые в производстве шин, конвейерных лент, ремней, рукавов, изделий бытового назначения.

2. Резины специального назначения, используемые для получения разнообразных изделий, которые должны обладать одним или несколькими специальными свойствами (маслобензостойкость, морозостойкость, износостойкость и др.)

Резиновые клеи - это растворы каучуков или резиновых смесей в органических растворителях. В зависимости от типа каучука, на основе которого готовят клей, различают резиновые клеи специального и общего назначения. По температуре вулканизации (отверждения) резиновые клеи делят на клеи горячего (больше 100 оС) и холодного отверждения. Резиновые клеи применяют при сборке резиновых и резинотканевых изделий, в производстве резиновых тканей и т.д.

Герметики, герметизирующие составы - полимерные композиции, применяемые для обеспечения непроницаемости болтовых или заклепочных соединений металлических конструкций, стыков между панелями наружных стен зданий и т.д. Герметики широко применяют в авиации, автомобилестроении, судостроении, строительстве. Они используются также в областях, не связанных с их основным назначением, например для изготовления точных слепков и отливок в технике зубопротезирования и криминалистике.

Стекло, ситаллы, графит

Стекло неорганическое – прозрачный (бесцветный или окрашенный) хрупкий материал, получаемый при остывании расплава, содержащего стеклообразующие компоненты ( оксиды кремния, бора, алюминия, фосфора, титана, циркония и др.). и оксиды металлов (лития, калия, свинца, кальция, магния и др.). По типу стеклообразующего компонента различают стекло неорганическое силикатное (на основе SiO2), боратное (В2О3), боросиликатное, алюмосиликатное и др.(рис. 3).

Рис. 3. Схема непрерывной структурной сетки стекла: а – кварцевого, б – натриево-силикатного

Благодаря возможности придавать неорганическому стеклу разнообразные свойства, оно широко распространено в различных отраслях техники, строительстве, декоративного искусства и быту.

Стекло органическое – техническое название прозрачных пластмасс на основе полистирола, поливинилхлоридов, поликарбонатов и др. По сравнению с неорганическим стеклом стекло органическое отличается относительно небольшой плотностью и повышенной прочностью. Органическое стекло малочувствительно к ударам, толчкам и не дает опасных осколков. Применяется для изготовления 3-слойного стела для остекления самолетов, автомобилей и др. Из него изготавливаю детали приборов, линзы, светофильтры и бытовые изделия.

Термин «ситаллы» образован от слов: стекло и кристаллы. За рубежом их называют стеклокерамикой, пирокерамами. Ситаллы получают на основе неорганических стекол путем их полной или частичной управляемой кристаллизации. По структуре и технологии получения ситаллы занимают промежуточное положение между обычным стеклом и керамикой. От неорганических стекол они отличаются кристаллическим строением, а от керамических материалов — более мелкозернистой и однородной микрокристаллической структурой (рис. 4).

Рис. 4. Схема кристаллизации стекла при образовании ситаллов с помощью катализаторов

Ситаллы получают путем плавления стекольной шихты специального состава с добавкой катализаторов, охлаждения расплава до пластичного состояния и формования из него изделий методами стекольной технологии и последующей кристаллизации. Ситалловые изделия получают также порошковым методом спекания.

В отличие от обычного стекла, свойства которого определяются в основном его химическим составом, для ситаллов решающее значение имеют структура и фазовый состав. Причина ценных свойств ситаллов заключается в их исключительной мелкозернистости, почти идеальной поликристаллической структуре. Свойства ситаллов изотропны. В них совершенно отсутствует всякая пористость. Усадка материала при его переработке незначительна. Большая абразивная стойкость делает их малочувствительными к поверхностным дефектам. Материалы обладают высокой химической устойчивостью к кислотам и щелочам, высокой жаростойкостью. Они газонепроницаемы и обладают нулевым водопоглощением. Хорошие диэлектрики.

Жаропрочность ситаллов под нагрузкой составляет 800–1200 ºС. Ударная вязкость ситаллов выше, чем ударная вязкость стекла (4,5-10,5 кДж/м2), однако они являются хрупкими материалами. Обладают высокой твердостью (микротвердость 7000-10500 МПа) и износостойкостью.

Применение ситаллов определяется их свойствами. Из ситаллов изготовляют подшипники, детали для двигателей внутреннего сгорания, трубы для химической промышленности, оболочки вакуумных электронных приборов, детали радиоэлектроники. Ситаллы используют в качестве жаростойких покрытий.

Графит – минерал, наиболее устойчивая кристаллическая модификация чистого углерода. Это полимерный материал кристаллического пластинчатого строения. Он образован параллельными слоями гексагональных сеток (плоскостей) (рис. 5).

Рис. 5. Кристаллическая решетка графита

Графит встречается в природе, а также получается искусственным путем. Физико-механические свойства искусственного графита зависят от природы исходного сырья, технологии получения, плотности, степени ориентации кристаллов и др.

В качестве исходных материалов при производстве технического графита применяют твердое сырье — нефтяной кокс и каменно угольный пек в качестве связующего вещества. Заготовки формуются в процессе прессования или выдавливания. Процесс графитизации осуществляется путем нагрева заготовок (обожженных при 1200 °С) до 3000 °С.

Графит используется в производстве плавильных тиглей, электродов, карандашей, в атомных ректорах, а также для получения синтетических алмазов.

Соседние файлы в папке лекции по материаловедению вед