Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 11.doc
Скачиваний:
41
Добавлен:
10.04.2015
Размер:
153.6 Кб
Скачать

Введение.

Широкое внедрение вычислительной техники вызвало интен­сивное развитие и распространение автоматизированного, или компьютерного, дешифрирования, под которым понимается об­работка цифровой аэрокосмической информации, с целью кар­тографирования или решения других географических задач.

1. Понятие о цифровом снимке

Цифровым снимком называют изображение земной поверхно­сти, которое записано в виде цифровых значений на магнитном носителе и может быть визуализировано на экране монитора. В от­личие от снимка, представленного в фотографическом виде, где изображение непрерывно, цифровой снимок состоит из дискрет­ных элементов изображения — пикселов (от англ. рicture element). Размер пиксела определяет пространственное разрешение цифро­вого снимка. В пределах пиксела изображение однородно, так как яркости всех объектов интегрируются независимо оттого, насколько сильно они различаются.

Каждый из пикселов имеет координаты в цифровой записи: но­мер строки (х) и номер столбца (у). Началом координат служит первый пиксел (левый верхний пиксел изображения), и, как это принято в компьютерном представлении данных, номер строки возрастает при движении вниз, а столбца — вправо.

В радиометрическом отношении цифровой снимок также дискретизирован. Весь интервал яркостей от черного до белого при­нято делить, как указывалось выше, на 256 уровней (в машинном коде это соответствует 8 битам, или 1 байту на пиксел). Один уро­вень яркости соответствует радиометрическому разрешению снимка. Номер уровня яркости, или кодированное значение яркости, пред­ставляет третью координату пиксела цифрового снимка. В много­зональном снимке пикселу с определенными координатами х, у соответствует несколько значений яркости, по числу съемочных каналов.

Снимок в целом или его фрагмент может быть представлен в виде матрицы значений яркости. Такая организация аэрокосмичес­ких данных позволяет манипулировать ими с помощью компьютера.

В результате проведения геометрических преобразований коор­динаты элементов цифрового снимка могут быть связаны с про­странственными координатами — географическими или геодези­ческими, а снимок трансформирован в заданную проекцию. В про­граммных пакетах это преобразование может быть организовано как единая процедура или как две разные. В процессе присвоения пространственных координат (геокодировании) перестройки из­менения аэрокосмического изображения не происходит, лишь ус­танавливается связь между растровыми и пространственными ко­ординатами. Второй процесс — трансформирование — требует пе­рестройки изображения. Поясним это на простом примере разворота изображения.

Плоскость орбиты спутника, как правило, наклонена к оси Земли, т.е. оси координат цифрового снимка в общем случае не параллельны ни сетке параллелей и меридианов, ни сетке прямо­угольных координат. На рис. 1 схематически показана цифровая запись снимка в первичном виде и после преобразований. Чтобы развернуть снимок «на север», т.е. сделать параллельными оси коор­динат цифровой записи и пространственной системы (на рисунке это система географических координат), в запись вводятся «чистые» пикселы, что и приводит к изменению координат пикселов сним­ка в цифровой записи. В двух этих случаях координаты трех условно выбранных пикселов в системе цифровой записи различны.

В действительности перестройка изображения значительно слож­нее, чем это показано на приведенном примере: для трансформи­рования снимка требуется введение новых пикселов или объеди­нение двух в один по всему изображению, что влечет за собой некоторое ухудшение в воспроизведении мелких объектов.

В случае, когда снимок визуализирован на экране, каждый пиксел имеет, кроме того, координаты экрана. Они могут совпа­дать с координатами цифровой записи, если визуализированное изображение начинается с начала цифровой записи и выведено на экран в масштабе 1:1. Если же изображение на экране увеличено (уменьшено) и/или выведен лишь фрагмент записи, совпадения ко­ординат не будет. Таким образом, пикселы визуализированного на экране монитора цифрового снимка, предварительно преобразован­ного в определенную проекцию, имеют координаты в трех систе­мах — цифровой записи, пространственных координат и экрана.

Система координат цифрового снимка

Пик­селы

Первичная

цифровая

запись

Трансформированный и координированный снимок

Цифровая запись

Прямоугольная, км

Географическая,

X

У

X

У

X

У

Ф

X

А Б В

1 6 11

1

8 15

4

8 11

1

8 18

8737,0 8739,0 8741,0

5091,0 5087,0 5082,5

45°49,8 45°47,7 45°45,6

47°47,5 47°40,0 47°50,5

Рис. 1. Координаты пикселов в первичной цифровой записи (а) и после выполнения геометрических преобразований изображения (б)

Получение снимков в цифровом виде обеспечивается или при съем­ке, если используются оптико-электронные съемочные системы, или цифрованием фотографических снимков. Цифрование выполняется на специальных сканирующих микроденситометрах, называемых обычно сканерами. Пространственное разрешение современных ска­неров (до 1—2 мкм) позволяет сохранить при переводе в цифровую форму даже высокое разрешение аэрофотоснимков.

Полученные оптико-электронными системами цифровые сним­ки с помощью устройств, преобразующих электрический сигнал в световой, могут быть представлены как фотографические изобра­жения. Дешифрировать такие снимки можно только визуально, а используемые при этом признаки и способы не отличаются от тех, которые применяются при работе со снимками, полученными фотографическими системами.

При компьютерном дешифрировании цифровых снимков воз­можны два подхода:

  • визуальное дешифрирование экранного изображения;

  • автоматизированная (компьютерная) классификация.

В первом случае информацию извлекает дешифровщик путем визуального анализа экранного изображения. Исполнитель в отличие от компьютера воспринимает прежде всего пространственную ин­формацию, часто даже не зная количественных характеристик. Яркостные различия оцениваются им на качественном уровне, но зато он использует и другие дешифровочные признаки, форму например, а также косвенные дешифровочные признаки.

Второй подход заключается в выполнении математических про­цедур, позволяющих сгруппировать объекты по некоторому форма­лизованному признаку. В настоящее время в качестве признака ис­пользуют на черно-белых снимках — величину яркости, а на мно­гозональных — набор значений яркости на серии зональных снимков, называемый спектральным образом. Анализ ведется на уровне отдельного пиксела. Пространственную информацию о де­шифрируемых объектах при этом подходе обычно получают с ис­пользованием программных средств путем подсчета пикселов с близкими или одинаковыми характеристиками.

Основное преимущество первого подхода — легкость получе­ния пространственной информации и благодаря привлечению ком­плекса дешифровочных признаков — высокий уровень принимае­мых решений, а второго — возможность выполнения сложных ма­тематических преобразований при малом участии человека. Очевидно, что оба подхода могут дополнять один другого, а пото­му часто используются совместно.

Основные принципы и способы визуального дешифрирования сохраняются вне зависимости от того, представлены снимки как изображение на фотобумаге (пленке) или на экране. Различие зак­лючается в том, что в первом случае дешифровщик имеет дело со снимком, свойства которого он не может изменить, а во втором такая возможность есть.

Различают два вида преобразований цифрового снимка: гео­метрические и яркостные.

Конечной целью геометрических преобразований является пред­ставление цифрового снимка в определенной проекции и системе координат. Преобразования выполняются в случае использования снимков для создания карты или необходимости сопоставления разных по типу или времени получения материалов. Обязательны геометрические преобразования для данных дистанционного зон­дирования, входящих составной частью в базу данных геоинфор­мационной системы.

Основная цель яркостных преобразований— улучшение визуаль­ного восприятия экранного изображения. Однако в некоторых слу­чаях они могут служить конечным результатом дешифрирования.