Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Gista_Shpory (1).docx
Скачиваний:
43
Добавлен:
10.04.2015
Размер:
153.82 Кб
Скачать

Билет41

аорта.поджел

1.жизненный цикл клетки. Размножение: митоз, мейоз. Клеточный цикл — это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти. Важным компонентом клеточного цикла является митотический (пролиферативныйцикл —комплекс взаимосвязанных и согласованных во времени событий, происходящих в процессе подготовки клетки к делению и на протяжении самого деления. Кроме того, в жизненный цикл включаетсяпериод выполнения клеткой многоклеточного организма специфических функций, а также периоды покоя. В периоды покоя ближайшая судьба клетки не определена: она может либо начать подготовку к митозу, либо приступить к специализации в определенном функциональном направлении Продолжительность митотического цикла для большинства клеток составляет от 10 до 50 ч. Длительность цикла регулируется путем изменения продолжительности всех его периодов. У млекопитающих время митоза составляет 1—1,5 ч, 02-периода интерфазы —2—5 ч, S-периода интерфазы — 6—10 ч.

Митоз — это основной тип деления соматических эукариотических клеток. Процесс деления включает в себя несколько последовательных фаз и представляет собой цикл. Его продолжительность различна и составляет у большинства клеток от 10 до 50 ч. Обеспечивает преемственность генетического материала в ряду клеток дочерних генераций; приводит к образованию клеток, равноценных как по объему, так и по содержанию генетической информации. Основные стадии митоза.1. Редупликация (самоудвоение) генетической информации материнской клетки и равномерное распределение ее между дочерними клетками.2. Митотический цикл состоит из четырех последовательных периодов: 1) пресинтетическая (G1). Идет сразу после деления клетки. Синтеза ДНК еще не происходит. Клетка активно растет в размерах, запасает вещества, необходимые для деления. Происходит деление митохондрий и хлоропластов. Восстанавливаются черты организации интерфазной клетки после предшествующего деления; 2) синтетическая (S). Происходит удвоение генетического материала путем репликации ДНК. В итоге образуются две идентичные двойные спирали ДНК, каждая из которых состоит из одной новой и старой цепи ДНК. Количество наследственного материала удваивается. Кроме этого, продолжается синтез РНК и белков; 3) постсинтетическая (G2). ДНК уже не синтезируется, но происходит исправление недочетов, допущенных при синтезе ее в S период (репарация).Также накапливаются энергия и питательные вещества, продолжается синтез РНК и белков (преимущественно ядерных). S и G2 непосредственно связаны с митозом, поэтому их иногда выделяют в отдельный период — препрофазу. После этого наступает собственно митоз, который состоит из четырех фаз.

Мейо́з (от греч. meiosis — уменьшение) или редукционное деление клетки — деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом — образованием специализированных половых клеток, или гамет, из недифференцированных стволовых.С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса. Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними. Профаза I К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки. Метафаза I — бивалентные хромосомы выстраиваются вдоль экватора клетки. Анафаза I — микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе. Телофаза I — хромосомы деспирализуются и появляется ядерная оболочка. Профаза II — происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления. Метафаза II — унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку. Анафаза II — униваленты делятся и хроматиды расходятся к полюсам. Телофаза II — хромосомы деспирализуются и появляется ядерная оболочка. В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и три так называемыхредукционных тельца (абортивные дериваты первого и второго делений).

2.-----

3.молочная железа. Является частью репродуктивной системы. До полового созревания мол.жел.состоит из небольшого числа долей,образованных короткими эпителиальными тяжами,кот располагаются среди волокнистой соед. и жировой тканей(система протоков). При половом созревании происходит рост и ветвление протоков. Под действием эстрогенов с каждым половым циклом они удлиняются. У взросл.жен мол.жел состоит из 15-20 долей-трубчато-альвеолярных желез,кот разграничены тяжами плотной соед.ткани. Сосок - выступ кожи, на вершине которого открываются выводные протоки молочной железы, дерма области соска содержит большое количество пигментных клеток эстрогены вызывают рост протоков,прогестерон вызывает дифференцировку концевых отделов,пролактин вызыв.процесс секреции молока,окситоцин вызыв.сокращение миоэпит.кл-ок. Источники развития-эктодерма-концевые секреторные отделы,выводные протоки(паренхима-), мезенхима-строма.

Билет № 18.

Дно жел, гипофиз

1-Взаимодействие комп-тов клетки при метаболизме. (синтез белковых и небелковых компонентов.)

2-Гемопоэз. Понятие о стволовых клетках. Гранулоцитопоэз.

3-Производные кожи. Развитие, строение волоса.

2- 1. Кроветворение (гемоцитопоэз)процесс образования форменных элементов крови.

Различают два вида кроветворения:

миелоидное кроветворение:· эритропоэз;· гранулоцитопоэз;· тромбоцитопоэз;· моноцитопоэз.

лимфоидное кроветворение:· Т-лимфоцитопоэз;· В-лимфоцитопоэз.

Кроме того, гемопоэз подразделяется на два периода:· эмбриональный;· постэмбриональный.

^ Эмбриональный период гемопоэза приводит к образованию крови как ткани и потому представляет собой гистогенез крови. Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови как ткани.

Эмбриональный период гемопоэза осуществляется поэтапно, сменяя разные органы кроветворения. В соответствии с этим эмбриональный гемопоэз подразделяется на три этапа:

· желточный;

· гепато-тимусо-лиенальный;

· медулло-тимусо-лимфоидный.

^ Желточный этап осуществляется в мезенхиме желточного мешка, начиная со 2-3-ей недели эмбриогенеза, с 4-ой недели он снижается и к концу 3-го месяца полностью прекращается. Процесс кроветворения на этом этапе осуществляется следующим образом, вначале в мезенхиме желточного мешка, в результате пролиферации мезенхимальных клеток, образуются «кровяные островки», представляющие собой очаговые скопления отростчатых мезенхимальных клеток. Затем происходит дифференцировка этих клеток в двух направлениях (дивергентная дифференцировка):

· периферические клетки островка уплощаются, соединяются между собой и образуют эндотелиальную выстилку кровеносного сосуда;

· центральные клетки округляются и превращаются в стволовые клетки.

Из этих клеток в сосудах, то есть интраваскулярно начинается процесс образования первичных эритроцитов (эритробластов, мегалобластов). Однако часть стволовых клеток оказывается вне сосудов (экстраваскулярно) и из них начинают развиваться зернистые лейкоциты, которые затем мигрируют в сосуды.

^ Наиболее важными моментами желточного этапа являются:

· образование стволовых клеток крови;

· образование первичных кровеносных сосудов.

Несколько позже (на 3-ей неделе) начинают формироваться сосуды в мезенхиме тела зародыша, однако они являются пустыми щелевидными образованиями. Довольно скоро сосуды желточного мешка соединяются с сосудами тела зародыша, по этим сосудам стволовые клетки мигрируют в тело зародыша и заселяют закладки будущих кроветворных органов (в первую очередь печень), в которых затем и осуществляется кроветворение.

Гепато-тимусо-лиенальный этап гемопоэза осуществляется в начале в печени, несколько позже в тимусе (вилочковой железе), а затем и в селезенке. В печени происходит (только экстраваскулярно) в основном миелоидное кроветворение, начиная с 5-ой недели и до конца 5-го месяца, а затем постепенно снижается и к концу эмбриогенеза полностью прекращается. Тимус закладывается на 7-8-й неделе, а несколько позже в нем начинается Т-лимфоцитопоэз, который продолжается до конца эмбриогенеза, а затем в постнатальном периоде до его инволюции (в 25–30 лет). Процесс образования Т-лимфоцитов в этот момент носит название антиген независимая дифференцировка. Селезенка закладывается на 4-й неделе, с 7–8 недели она заселяется стволовыми клетками и в ней начинается универсальное кроветворение, то есть и миелоилимфопоэз. Особенно активно кроветворение в селезенке протекает с 5-го по 7-ой месяцы внутриутробного развития плода, а затем миелоидное кроветворение постепенно угнетается и к концу эмбриогенеза (у человека) оно полностью прекращается. Лимфоидное же кроветворение сохраняется в селезенке до конца эмбриогенеза, а затем и в постэмбриональном периоде.

Следовательно, кроветворение на втором этапе в названных органах осуществляется почти одновременно, только экстраваскулярно, но его интенсивность и качественный состав в разных органах различны.

Медулло-тимусо-лимфоидный этап кроветворения. Закладка красного костного мозга начинается со 2-го месяца, кроветворение в нем начинается с 4-го месяца, а с 6-го месяца он является основным органом миелоидного и частично лимфоидного кроветворения, то есть является универсальным кроветворным органом. В то же время в тимусе, в селезенке и в лимфатических узлах осуществляется лимфоидное кроветворение. Если красный костный мозг не в состоянии удовлетворить возросшую потребность в форменных элементах крови (при кровотечении), то гемопоэтическая активность печени, селезенки может активизироваться – экстрамедуллярное кроветворение.

Постэмбриональный период кроветворения – осуществляется в красном костном мозге и лимфоидных органах (тимусе, селезенке, лимфатических узлах, миндалинах, лимфоидных фолликулах).

Сущность процесса кроветворения заключается в пролиферации и поэтапной дифференцировке стволовых клеток в зрелые форменные элементы крови.

-Производные кожи. Развитие, строение волоса Кожа состоит из трех слоев. Поверхностный слой – эпидермис – самый тонкий, но самый сложный по строению. Под ним дерма – cutis propria,– включает два слоя: сосочковый и сетчатый. Под дермой находится гиподерма (подкожная жировая клетчатка).

Эпидермис –наружная часть кожи, представлен многослойным плоским ороговевающим эпителием. Толщина его варьирует от 0,05 мм на веках до 1,5 мм на ладонях. Около 95% клеток эпидермиса являются кератиноцитами (производными эктодермы) , которые по мере дифференцировки продвигаются от базальной мембраны по направлению к поверхности кожи. Эпидермис состоит из 5 слоев: базального, шиповатого, зернистого, блестящего и рогового. На границе между собственно кожей и эпидермисом находится базальная мембрана толщиной 40–50 нм. Базальная мембрана является эластической опорой, не только прочно связывающей эпителий с коллагеновыми волокнами дермы, но и препятствующей росту эпидермиса в дерму. Она образована из филаментов и полудесмосом, а также сплетений ретикулярных волокон, являющихся частью дермы, выполняет барьерную, обменную и другие функции и состоит из 3 слоев. Непосредственно к базальной мембране прикреплен 1-й, самый глубокий из слоев эпидермиса базальный слой (stratum basale syn. germinativum), состоящий из 1 ряда мелких клеток цилиндрической формы, располагающихся в виде частокола и называемых базальными кератиноцитами . Они имеют крупные темно окрашенные (базофильные) ядра и плотную цитоплазму, содержащую много рибосом и пучков тонофиламентов. Между собой клетки соединены межклеточными мостиками (десмосомами), а к базальной мембране крепятся полудесмосомами. Базальные кератиноциты синтезируют нерастворимый протеин, из которого образуются кератиновые филаменты, формирующие цитоскелет кератиноцитов и входящие в состав десмосом и полудесмосом . Основная функция этих клеток базального слоя – ростковая. Митотическая активность клеток базального слоя (1 митоз на 400 клеток) обеспечивает формирование вышележащих структур эпидермиса. В норме клетки базального слоя делятся: из одной получаются две, и весь цикл от базоцита до клеток рогового кератоцита составляет 21 день. Среди клеток базального слоя располагаются меланоциты – дендритические клетки, которые мигрируют в эмбриональном периоде из неврального гребешка в эпидермис, эпителий слизистых оболочек, волосяные фолликулы, дерму, мягкие мозговые оболочки, внутреннее ухо и некоторые другие ткани. Они синтезируют пигмент меланин. Отростки меланоцитов распространяются между кератиноцитами. Меланин накапливается в базальных кератиноцитах над апикальной частью ядра, образуя защитный экран от ультрафиолетового и радиоактивного излучения. У лиц с темной кожей он проникает также в клетки шиповатого, вплоть до зернистого, слоя. У людей выделяют два основных класса меланинов в гистологии кожи: эумеланины – производимые эллипсоидными меланосомами (эумеланосомами), придающие коже и волосам коричневый и черный цвет; феомеланины – продуцируемые сферическими меланосомами (феомеланосомами) и обусловливающие цвет волос от желтого до красно-коричневого. Цвет кожи зависит не от количества меланоцитов, которое примерно постоянно у людей разных рас, а от количества меланина в одной клетке. Загар после ультрафиолетового облучения обусловлен ускорением синтеза меланосом, меланизации меланосом, транспорта меланосом в отростки и передачи меланосом в кератиноциты. Уменьшение с возрастом количества и активности фолликулярных меланоцитов приводит к прогрессирующему седению волос.

Непосредственно над базальным слоем кератиноциты увеличиваются в размере и формируют шиповатый слой (stratum spinosum), состоящий из шиповатых кератиноцитов , постепенно уплощающихся к поверхности кожи. Клетки этого слоя имеют полигональную форму и также связаны между собой десмосомами. В клетках этого слоя тонофибрилл больше, чем в базальных кератиноцитах, они концентрически и сгущенно располагаются вокруг ядер и вплетаются в десмосомы. В цитоплазме шиповатых клеток имеются многочисленные округлые везикулы различного диаметра, канальцы цитоплазматической сети, а также меланосомы. Базальный и шиповатый слои называют ростковым слоем Мальпиги, так как в них встречаются митозы, причем в шиповатом – только при обширных повреждениях эпидермиса. За счет этого происходят формирование и регенерация эпидермиса. В норме количество рядов составляет от 5 до 12.

В базальном и шиповатом слоях эпидермиса располагаются клетки Гринстейна – разновидность тканевых макрофагов, являющиеся антигенпредставляющими клетками для Т-супрессоров.

Клетки зернистого, или кератогиалинового, слоя (stratum granulosum) имеют вблизи шиповатого слоя цилиндрическую или кубическую форму, а ближе к поверхности кожи – ромбовидную. Ядра клеток отличаются заметным полиморфизмом, а в цитоплазме образуются включения – зерна кератогиалина. В нижних рядах зернистого слоя происходит биосинтез филагрина – основного белка кератогиалиновых зерен . Он обладает способностью вызывать агрегацию кератиновых фибрилл, образовывая таким образом кератин роговых чешуек. Вторая особенность клеток зернистого слоя – присутствие в их цитоплазме кератиносом, или телец Одланда, содержимое которых (гликолипиды, гликопротеиды, свободные стерины, гидролитические ферменты) выделяется в межклеточные пространства, где из него формируется пластинчатое цементирующее вещество. В норме количество рядов клеток зернистого слоя от 1 до 5.

Выше зернистого находится блестящий слой (stratum lucidum). Он виден в участках наиболее развитого эпидермиса, т. е. на ладонях и подошвах, где состоит из 3–4 рядов вытянутых по форме слабо контурированных клеток. Ядра в верхних слоях клеток отсутствуют. На гистологическом срезе он представлен в виде сплошной ровной бесцветной полосы. Этот слой защищает от воздействия воды и электролитов. Вся цитоплазма клеток заполнена веществами, преломляющими свет: гликоген, липиды и элеидин (второй этап образования рогового вещества кератина).

Самый поверхностный слой – роговой (stratum corneum) – образован полностью ороговевшими безъядерными клетками – корнеоцитами (роговыми пластинками), которые содержат нерастворимый белок кератин. Этот слой делится на 2 подуровня. Поверхностный подуровень – это слой физиологического шелушения,– происходит незаметное глазом слущивание роговых отживших клеток; бактерии, вредные вещества уходят с этим слоем. Корнеоциты соединяются друг с другом с помощью взаимопроникающих выростов оболочки и ороговевающих десмосом. В поверхностной зоне рогового слоя десмосомы разрушаются, и роговые чешуйки легко отторгаются. Толщина рогового слоя зависит от скорости размножения и продвижения кератиноцитов в вертикальном направлении и скорости отторжения роговых чешуек. Наиболее развит роговой слой там, где кожа подвергается наибольшему механическому воздействию (ладони, подошвы).

Эпителий слизистых оболочек за исключением спинки языка и твердого неба лишен зернистого и рогового слоев. Кератиноциты в этих участках в процессе миграции от базального слоя к поверхности кожи вначале выглядят вакуолизированными, главным образом за счет гликогена, а затем уменьшаются в размерах и в конечном итоге подвергаются десквамации. Кератиноциты слизистой оболочки рта имеют небольшое количество хорошо развитых десмосом и множество микроворсинок, сцепление клеток между собой осуществляется посредством аморфной межклеточной склеивающей субстанции, растворение которой приводит к разъединению клеток.

В нижней части эпидермиса располагаются белые отростчатые клетки Лангерганса – внутриэпидермальные макрофаги , выполняющие антигенпредставляющую функцию для Т-хелперов. Антигенпредставляющая функция этих клеток осуществляется путем захвата антигенов из внешней среды, переработки их и экспрессии на своей поверхности. В комплексе с собственными молекулами HLA-DR и интерлейкином (ИЛ-1) антигены представляются эпидермальным лимфоцитам, в основном Т-хелперам, которые вырабатывают ИЛ-2, индуцирующий в свою очередь пролиферацию Т-лимфоцитов. Активированные таким образом Т-клетки участвуют в иммунном ответе. Дерма – опора для сосудов, нервов и для придатков кожи (волос, ногтей, потовых и сальных желез). Толщина ее варьирует от 0,3 до 3 мм. По объему дерма больше, чем эпидермис, в ней различают два слоя. Поверхностный носит название сосочкового слоя (stratum papillare), так как волокна повторяют очертания базальной мембраны, 2-й подуровень, более толстый,– это сетчатый слой (stratum reticulare). Дерма состоит из 3 компонентов – основы, или матрицы, волокнистой субстанции и клеточного компонента. Основой этого слоя является гелеобразная масса, которая не имеет форму и состоит из мукополисахаридов, гликопротеидных комплексов, гиалуронидазы. Волокнистая субстанция играет роль каркаса, придает коже определенную форму, эластичность и растяжимость. Различают эластические, коллагеновые, аргирофильные волокна. В сосочковом слое они располагаются в виде волокнистых линий, в ретикулярном слое – в виде сетки. Дерма относительно бедна клеточным компонентом. Равномерно между волокнами расположены следующие клетки: тучные клетки Эрлиха – содержат гранулы серотонина, гистамина и участвуют в воспалительных реакциях; фибробласты – участвуют в образовании соединительной ткани; гистиоциты – накапливают гемосидерин, меланин и возникший при воспалении детрит. Вокруг сосудов и волос в дерме могут встречаться небольшие лимфогистиоцитарные инфильтраты. В норме в дерме эти клетки расположены равномерно. В некоторых участках сосочкового слоя расположены гладкие мышечные волокна, преимущественно связанные с волосяными луковицами. Прочность кожи зависит в основном от структуры сетчатого слоя, различного по своей мощности в разных участках кожного покрова.

Гиподерма, или подкожная жировая клетчатка, представлена жировыми дольками. Каждая долька – это совокупность жировых клеток, объединенных общей соединительнотканной оболочкой. К каждой дольке подходит питающий ее сосуд и нервное окончание. Выраженность гиподермы зависит от локализации. Толщина гиподермы варьирует от 2 мм (на черепе) до 10 см и более (на ягодицах). Гиподерма толще на дорсальных и разгибательных, тоньше на вентральных и сгибательных поверхностях конечностей. Местами (на веках, под ногтевыми пластинками, на крайней плоти, малых половых губах и мошонке) она отсутствует.

Билет № 28.

Легкие, язык

1-Овогенез . Сперматогенез.

2- Рыхлая волокнистая соединительная ткань обнаруживается во всех органах, так как она сопровождает крс-веносные и лимфатические сосуды и образует строму многих органов. Не смотря на наличие органных особенностей, строение рыхлой волокнистой соединительной ткани в различных органах имеет сходство. Она состоит из клеток и межклеточного вещества.

Межклеточное вещество, или матрикс, соединительной ткани состоит из коллагеновых и эластических волокон, а также из основного (аморфного) вещества. Межклеточное вещество как у зароды¬шей, так и у взрослых образуется, с одной стороны, путем секреции, осу¬ществляемой соединительнотканными клетками, а с другой — из плазмы крови, поступающей в межклеточные пространства.

У зародышей человека образование межклеточного вещества происхо¬дит начиная с 1—2-го месяца внутриутробного развития. В течение жизни межклеточное вещество постоянно обновляется — резорбируется и восста¬навливается.

Коллагеновые структуры, входящие в состав соединительных тканей организмов человека и животных, являются наиболее представительными ее компонентами, образующими сложную организационную иерархию. Ос¬нову всей группы коллагеновых структур составляет волокнистый белок — коллаген, который определяет свойства коллагеновых структр.

Коллагеновые волокна в составе разных видов соеди¬нительной ткани определяют их прочность. В рыхлой неоформленной волокнистой соединительной ткани они располагаются в различных направлени¬ях в виде волнообразно изогнутых, спиралевидно скрученных, округлых или уплощенных в сечении тяжей. Внутренняя структура коллагенового волокна определяется фибрилляр¬ным белком — коллагеном, который синтезируется на рибосомах грануляр¬ной эндоплазматической сети фибробластов.

Различают 14 типов коллагена, отличающихся молекулярной организа¬цией, органной и тканевой принадлежностью.

Эластические волокна. Наличие эластических волокон в соединительной ткани определяет ее эластичность и растяжимость. В рыхлой волокнистой со¬единительной ткани они широко анастомозируют друг с другом. В сос¬таве эластических волокон различают микрофибриллярный и аморфный ком¬поненты.

Основой эластических волокон является глобулярный гликопротеин — эластин, синтезируемый фибробластами и гладкими мышечными клетками.

Фибробласты (фибробластоциты) — клетки, синтезирующие компоненты межкле¬точного вещества: белки (коллаген, эластин), протеогликаны, гликопротеины.

Среди мезенхимных клеток имеются стволовые клетки, дающие начало дифферону фибробластов: стволовые клетки, полустволовые клетки-предшественники, малоспециализированные, дифференцированные фибробласты (зрелые, активно функционирующие), фиброциты (дефинитивные формы клеток), а также миофибробласты и фиброкласты. С главной функцией фиб¬робластов связаны образование основного вещества и волокон, заживление ран, развитие рубцовой ткани, образование соединительнотканной капсу¬лы вокруг инородного тела и др. Морфологически в этом диффероне мож¬но идентифицировать только клетки, начиная с малоспециализированного фибробласта.

В цитоплазме фибробластов, особенно в периферическом слое, распо¬лагаются микрофиламенты, содержащие белки типа ак¬тина и миозина, что обусловливает способность этих клеток к движению. Движение фибробластов становится возможным только после их связыва¬ния с опорными фибриллярными структурами с помощью фибронектина — гликопротеина, синтези¬рованного фибробластами и другими клетками, обеспечивающего адгезию клеток и неклеточных структур.

3-Спинной мозг- Спинной мозг состоит из двух симметричных половин, отграниченных друг от друга спереди глубокой серединной щелью, а сзади – соединительнотканной перегородкой. Внутренняя часть органа темнее — это его серое вещество. На периферии спинного мозга располагается более светлое белое вещество. Серое вещество спинного мозга состоит из тел нейронов, безмиелиновых и тонких миелиновых волокон и нейроглии. Основной составной час¬тью серого вещества, отличающей его от белого, являются мультиполярные нейроны.Выступы серого вещества принято называть рогами. Различают передние, или вентральные, задние, или дорсальные, и боковые, или латеральные, рога. В процессе развития спинного мозга из нервной трубки образуются нейроны, группирующиеся в 10 слоях, или в пластинах. Для человека характерна следующая архитектоникауказанных пластин: I—V пластины соответствуют задним рогам, VI—VII пластины — промежуточной зоне, VIII—IX пластины — передним рогам, X пластина — зона околоцентрального канала. Серое вещество мозга состоит из мультиполярных нейронов трех типов. Пер¬вый тип нейронов является филогенетически более древним и характеризуется не¬многочисленными длинными, прямыми и слабо ветвящимися дендритами (изоден-дритический тип). Второй тип нейронов имеет большое число сильно ветвящихся дендритов, которые переплетаются, образуя «клубки» (идиодендритический тип). Третий тип нейронов по степени развития дендритов занимает промежуточное положение между первым и вторым типами. Белое вещество спинного мозга представляет собой совокупность про¬дольно ориентированных преимущественно миелиновых волокон. Пучки нервных волокон, осуществляющие связь между различными отделами не¬рвной системы, называются проводящими путями спинного мозга.

Билет № 15.

Дно глаза, кожа пальца

1.ГЛАЗ - состоит из нескольких оболочек: (снаружи) склера, на переднем полюсе вместо склеры - роговица

сосудистая оболочка, специальными связками к одной из частей сосудистой оболочки прикрепляется хрусталик,

сетчатка,стекловидное тело

СКЛЕРА плотная волокнистая оформленная соединительная ткань

РОГОВИЦА состоит из 5 слоев:(снаружи) передний эпителий (многослойный плоский неороговевающий)передняя пограничная мембрана (Боуменова мембрана)собственное вещество роговицы,задняя пограничная мембрана (Десцеметова мембрана)задний эпителий (однослойный плоский)в роговице нет сосудов, много свободных нервных окончаний

ХРУСТАЛИК представляет собой двояковыпуклую линзу, состоит из следующих образований:

передний эпителий (однослойный плоский)хрусталиковые волокна (вытянутые остатки клеток хрусталика, полностью пропитанные белком кристаллином тончайшая соединительнотканная капсула клетки переднего эпителия делятся в области экватора, затем перестают делиться, вытягиваются, синтезируют белок кристаллин, который полностью пропитывает клетку (хрусталиковое волокно)в хрусталике нет сосудов,хрусталик лишен сферической и хроматической аберраций,хрусталик обладает упругостью и под действием внешних сил может изменять свою кривизну

СТЕКЛОВИДНОЕ ТЕЛО - вязкая желеобразная жидкость, состоит из белка витреина и гликозаминогликана - гиалуроновой кислоты.СОСУДИСТАЯ ОБОЛОЧКА состоит из собственно сосудистой оболочки, радужной оболочки и реснитчатого тела

собственно сосудистая оболочка ,надсосудистая пластинка,сосудистая пластинка

хориокапиллярная пластинка,базальная пластинка,радужная оболочка,передний эпителий (однослойный плоский),наружный пограничный слой,сосудистый слой - содержит сосуды, соединительную ткань и мышцы суживающую и расширяющую зрачок,внутренний пограничный слой,пигментный слой,реснитчатое тело (цилиарное тело)

цилиарная корона - в цилиарной короне и цилиарном кольце располагается цилиарная мышца,цилиарное кольцо

цилиарные отростки - покрыты двухслойным эпителием; внутренний слой клеток без пигмента, наружный - содержит много пигмента; к цилиарным отросткам прикрепляется связка хрусталика (циннова связка)

2- Рыхлая волокнистая соединительная ткань обнаруживается во всех органах, так как она сопровождает крс-веносные и лимфатические сосуды и образует строму многих органов. Не смотря на наличие органных особенностей, строение рыхлой волокнистой соединительной ткани в различных органах имеет сходство. Она состоит из клеток и межклеточного вещества.

Плотные волокнистые соединительные ткани характеризуются относительно большим количе¬ством плотно расположенных волокон и незначительным количеством кле¬точных элементов и основного аморфного вещества между ними. В зависи¬мости от характера расположения волокнистых структур эта ткань подраз¬деляется на плотную неоформленную и плотную оформленную соединитель¬ную ткань.

Плотная неоформленная соединительная ткань характеризуется неупо¬рядоченным расположением волокон. В плотной оформленной волокнистой соединительной ткани расположение волокон строго упорядочено и в каж¬дом случае соответствует тем условиям, в каких функционирует данный орган. Оформленная волокнистая соединительная ткань встречается в сухожилиях и связках, в фиброзных мембранах.

Клетки. Основными клетками соединительной ткани являются фибробласты (се¬мейство фибриллообразующих клеток), макрофаги (семейство), тучные клетки, адвентициальные клетки, плазматические клетки, перициты, жиро¬вые клетки, а также лейкоциты, мигрирующие из крови; иногда пигмент¬ные клетки.

3- Ядро (nucleus)- 1. Структурные элементы ядра Структурные элементы ядра, перечисленные ниже, бывают хорошо выражены только в интерфазе:1) хроматин; 2) ядрышко;3) кариоплазма; 4) кариолемма.

Хроматин это вещество, хорошо воспринимающее краситель состоит из хроматиновых фибрилл, толщиной 20–25 нм, которые могут располагаться в ядре рыхло или компактно. При подготовке клетки к делению в ядре происходят спирализация хроматиновых фибрилл и превращение хроматина в хромосомы. После деления в ядрах дочерних клеток происходит деспира-лизация хроматиновых фибрилл

По химическому строению хроматин состоит из:

1) дезоксирибонуклеиновой кислоты (ДНК);2) белков; 3) рибонуклеиновой кислоты (РНК).

Ядрышко – сферическое образование (1–5 мкм в диаметре), хорошо воспринимающее основные красители и располагающееся среди хроматина. Ядрышко не является самостоятельной структурой. Оно формируется только в интерфазе. В одном ядре содержится несколько ядрышек.

Микроскопически в ядрышке различают:

1) фибриллярный компонент (локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида);

2) гранулярный компонент (локализуется в периферической части ядрышка и представляет собой скопление субъединиц рибосом).

Кариолемма – ядерная оболочка, которая отделяет содержимое ядра от цитоплазмы обеспечивает регулируемый обмен веществ между ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина. Функции ядер соматических клеток: 1) хранение генетической информации, закодированной в молекулах ДНК; 2) репарация (восстановление) молекул ДНК после их повреждения с помощью специальных репаратив-ных ферментов;3) редупликация (удвоение) ДНК в синтетическом периоде интерфазы; 4) передача генетической информации дочерним клеткам во время митоза; 5) реализация генетической информации, закодированной в ДНК, для синтеза белка и небелковых молекул: образование аппарата белкового синтеза (информационной, рибосомальной и транспортных РНК).

Функции ядер половых клеток: 1) хранение генетической информации;2) передача генетической информации при слиянии женских и мужских половых клеток.

В организме млекопитающих и человека различают следующие типы клеток: 1) часто делящиеся клетки клетки эпителия кишечника; 2) редко делящиеся клетки (клетки печени);3) неделящиеся клетки (нервные клетки). Жизненный цикл у этих клеточных типов различен. Клеточный цикл подразделяется на два основных периода:1) митоз, или период деления;

2) интерфазу – промежуток жизни клетки между двумя делениями.

40 билет. Препараты: кровь, яичник.

1- Клеточная мембрана представляет собой двойной слой молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную и гидрофобную часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Биологическая мембрана включает и различные белки: интегральные , полуинтегральные, поверхностные. Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов. функции- барьерная, транспортная, рецепторная, ферментативная, МЕЖКЛЕТОЧНЫЕ КОНТАКТЫ

возникают в местах соприкосновения клеток в тканях и служат для межклеточного транспорта вешеств и передачи сигналов, а также для механич. скрепления клеток друг с другом. Осн. типы М. к.: а) рыхлые, или простые, контакты — между плазматич. мембранами соседних клеток имеется щель шириной 10—20 нм, заполненная гликокалликсом, специализированных структур на мембранах нет; б) межклеточные «замки» — мембраны соседних клеток разделены таким же расстоянием, но изгибаются, образуя на поверхности клеток впячива-ния; в) десмосомы; г) плотные контакты (встречаются в осн. в эпителиальных клетках) — разделяются на зону замыкания и зону слипания (промежуточный контакт); в зоне замыкания две соседние мембраны сливаются своими наруж. слоями, эта зона непроницаема для макромолекул и ионов, в зоне слипания мембраны разделены щелью в 10—20 нм, заполненной плотным веществом, вероятно, белковой природы; д) щелевидные (высокопропицаемые) контакты, свойственные всем типам эпителиальной и соединительной тканей,— плазматич. мембраны разделены промежутком в 2— 4 нм, пронизанным каналами, по к-рым низкомэяекулярные вещества попадают из цитоплазмы одной клетки в другую, минуя межклеточную среду. В большинстве случаев М. к. разрушаются при удалении из среды ионов Са2 + . Особыми формами М. к. являются синапсы, а также плазмодесмы растит, клеток.

2- Костные ткани. Мезенхимное происхождение Остеобласты (актив и неактив форма. Секр немил в-во матрикс остеоида (кости): коллаген 1 типа и мал других), циты (зрелые, окружены обызв матрк. Поддерж баланса Са и Р), класты (симпластич структуры от слияния моноцитов, рассасывают костн тк. Регул акт-ти парат гормон) + обызвеств межкл в-в. + минерал в-в (эластичность) КЛ: 1)Грубоволокнистая кос тк (неупорядоч распол волокон в матриксе. В эмбр, швы черепа) 2)Пластинчитая.

Прямой остеогистогенез. (Хар для грубоволкн). Обр-е скелетного островка. Очаговое раз­множение мезенхимных клеток и васкуляризация скелетогенного островка. Во второй стадии, заключающейся в дифференцировке кле­ток островков, образуется оксифильное межклеточное вещество с коллагеновыми фибриллами — органическая матрица костной ткани (остеоидная стадия). Третья стадия — кальцификация (импрегнация солями) межкле­точного вещества.

Непрямой остеогистогенез, месте хряща начинается в области диафиза (перихондральное окостенение). Образованию перихондральной костной манжетки предшествует разрастание кровеносных сосудов с дифференцировкой в надхрящнице, прилежащей к средней час­ти диафиза, остеобластов, образующих в виде манжетки сначала ретикулофиброзную костную ткань (первичный центр окостенения), затем заменяющуюся на пластинчатую.Регенерация. Физиологическая регенерация костных тканей происходит медленно за счет остеогенных клеток надкостницы, эндоста и остеогенных клеток в канале остеона. Посттравматическая регенерация кост­ной ткани протекает лучше в тех случаях, когда концы сломанной кости не смещены относительно друг друга. Процессу остеогенеза предшествует формирование соединительнотканной мозоли, в толще которой могут об­разовываться хрящевые отростки. Оссификация в этом случае идет по типу вторичного (непрямого) остеогенеза. В условиях оптимальной репо­зиции и фиксации концов сломанной кости регенерация происходит без об­разования мозоли. Но прежде чем начнут строить кость остеобласты, осте­окласты образуют небольшую щель между репонированными концами кости. Возрстные изменения. Соединительные ткани с возрастом претерпевают изменения в строении, количестве и химическом составе. С возрастом увеличиваются общая масса соединительнотканных образований, рост костного скелета. Во многих разновидностях соединительнотканных структур изменяется соотношение типов коллагена, гликозаминогликанов; в частности, в них становится больше сульфатированных соединений Регенерация. Физиологическая регенерация костных тканей происходит медленно за счет остеогенных клеток надкостницы, эндоста и остеогенных клеток в канале остеона. Посттравматическая регенерация кост¬ной ткани протекает лучше в тех случаях, когда концы сломанной кости не смещены относительно друг друга. Процессу остеогенеза предшествует формирование соединительнотканной мозоли, в толще которой могут об¬разовываться хрящевые отростки. Оссификация в этом случае идет по типу вторичного (непрямого) остеогенеза. В условиях оптимальной репо¬зиции и фиксации концов сломанной кости регенерация происходит без об¬разования мозоли. Но прежде чем начнут строить кость остеобласты, осте¬окласты образуют небольшую щель между репонированными концами кости.

Возрстные изменения. Соединительные ткани с возрастом претерпевают изменения в строении, количестве и химическом составе. С возрастом увеличиваются общая масса соединительнотканных образований, рост костного скелета. Во многих разновидностях соединительнотканных структур изменяется соотношение типов коллагена, гликозаминогликанов; в частности, в них становится больше сульфатированных соединений.

3- Эмбриональные источники развития печени.

В эмбриональном периоде печень закладывается и развивается из выпячивания стенки I кишки состоящей из энтодермы, мезенхимы и висцерального листка спланхнатомов. Из энтодермы образуются гепатоциты и эпителий желчевыводящих путей; из мезенхимы образуются соединительная ткань капсулы, перегородок и прослоек, кровеносные и лимфатические сосуды; из висцерального листка спланхнатомов вместе с мезенхимой –серозная оболочка.

У новорожденных капсула печени тонкая, отсутствует четкая дольчатость.. нет четкой радиальной ориентации печеночных пластинок в дольках, в печени еще встречаются очаги миелоидного кроветворения. К 4-5 годам появляется четкая дольчатость печени, а к 8-10 годам формирование окончательной структуры печени заканчивается. Основной структурной единицей П. является печеночная долька. Клетки в ней образуют печеночные балки, расположенные по радиусам . Между балками к центру дольки, где расположена центральная вена, тянутся синусоиды. На периферии дольки из желчных межклеточных капилляров формируются начальные желчные протоки (междольковые). Укрупняясь и сливаясь, они образуют в воротах П. печеночный проток, по которому желчь выходит из печени., печеночная долька построена из системы печеночных пластинок, сходящихся по направлению к центру дольки и состоящих из одного ряда клеток. Между пластинками расположены лакуны, образующие лабиринт.

Билет№38

Угол глаза, язвык

1. клетка,включения - компоненты цитоплазмы, представляющие собой отложения веществ, временно выведенных из обмена или конечных его продуктов. Специфика В. к. связана со специализацией соответств. клеток, тканей и органов. Наиб, распространены трофич. В. к. — капли жира, глыбки гликогена, желток в яйцах. В растит, клетках В. к. представлены гл. обр. крахмальными и алейроновыми зёрнами и липидными каплями. К В. к. относят также секреторные гранулы в железистых клетках животных, кристаллы нек-рых солей (гл. обр. оксалат кальция) в клетках растений. Особый вид В. к.— остаточные тельца — продукты деятельности лизосом.

2. мышечная ткань: (поперечно-полосатая) — упругая, эластичная ткань, сократима. По гистогенетич кл – соматического типа, тк источник разв явл миотомы сомитов. . Прочие же мигрируют из миотомов в мезенхиму; при этом они уже детерминированы, хотя внешне не отличаются от других кл мезенхимы. Их диф-ка продолжается в местах закладки др мышц тела. В ходе диф-вки возникает 2 кл-ые линии. Кл первой сливаются, образуя симпласты — мышечные трубки (миотубы). Клетки второй группы остаются самостоятельными и дифференцируются в миосателлиты (миосателлитоциты). В первой группе происходит дифференцировка специфических органелл миофибрилл, постепенно они занимают большую часть просвета миотубы, оттесняя ядра клеток к периферии. Клетки второй группы остаются самостоятельными и располагаются на поверхности мышечных трубок. Структурн 1 мышечной тк явл мышечное волокно, цилиндрическое образование. Оно состоит из миосимпласта и миосателлитоцитов (клеток-спутниц), покрытых сарколеммой. Сократительный аппарат: миофибриллы в центральной части саркоплазмы, его структ f саркомер

3.почки. виды нефронов. F: поддержание гомеостаза, водно-солевого обмена, АД, эритропоэза, удал конеч прод и чужеродн в-в. Бобовидную форм, покр тонк капсулой из плот волок соед.тк, содержащей гладкомыш кл-ки,и состоят из коркового и мозгового в-ва. Корковое в-во образует сплошной слой под капселой органа, от которого в созг.в-во направляются почечные столбы(Бертена). Мозговое в-во состоит из 10-18 конических мозговых пирамид,от основания кот.в корк.в-во проникают мозговые лучи. Вершины пирамид(сосочки) обращены в малые чашески,из кот.моча попадает через большие чашечки в почечную лоханку ,выходящую из ворот почки. Пирамида м покрыв.ее участком коры образуют почечную долю,а мозговой луч с окружающим его корк.в-вом-почечную дольку. Нефрон- структурно-функциональная единица почки животного. Нефрон состоит из почечного тельца, где происходит фильтрация, и системы канальцев, в которых осуществляются реабсорбция (обратное всасывание) и секреция веществ. Типы нефронов:Различают три типа нефронов — кортикальные нефроны (~85 %) и юкстамедуллярные нефроны (~15 %), субкапсулярные.1)Почечное тельце кортикального нефрона расположено в наружной части коркового вещества (внешняя кора) почки. Петля Генле у большинства кортикальных нефронов имеет небольшую длину и располагается в пределах внешнего мозгового вещества почки.2)Почечное тельце юкстамедуллярного нефрона расположено в юкстамедуллярной коре, около границы коры почки с мозговым веществом. Большинство юкстамедуллярных нефронов имеют длинную петлю Генле. Их петля Генле проникает глубоко в мозговое вещество и иногда достигает верхушек пирамид.3)Субкапсулярные находятся под капсулой.

3.глаз:сетчатка. сетчатка (tunica interna sensoria bulbi, retina) состоит из наружного пигментного слоя (pars pigmentosa, stratum pigmentosum) и внутреннего светочувствительного нервного (pars nervosa). Функционально выделяют заднюю большую зрительную часть сетчатки (pars optica retinae), меньшие части – цилиарную, покрывающую цилиарное тело (pars ciliares retinae) и радужковую, покрывающую заднюю поверхность радужки (pars iridica retinae). В заднем полюсе глаза находится желтоватого цвета пятно (macula) с небольшим углублением — центральной ямкой (fovea centralis).Сетчатка состоит из трех типов радиально расположенных нейронов и двух слоев синапсов. Первый тип нейронов, расположенных наружно, — это фоторецепторные нейроны (палочковые и колбочковые), второй тип — биполярные нейроны, осуществляющие контакты между первым и третьим типом, третий тип — ганглионарные нейроны. Кроме того, имеются нейроны, осуществляющие и горизонтальные связи, — это горизонтальные и амакриновые клетки.Итого, в сетчатке глаза можно выделить 8 слоев (снаружи внутрь):пигментный наружный эпителий;фотосенсорный слой (палочек и колбочек);наружный ядерный слой;наружный сетчатый слой;внутренний ядерный слой;внутренний сетчатый слой;ганглионарный слой;слой нервных волокон.Наружный ядерный слой содержит тела фоторецепторных нейронов, внутренний ядерный слой - тела биполярных, горизонтальных и амакриновых клеток, а ганглионарный слой — тела ганглиозных и перемещенных амакриновых клеток.Через все слои сетчатки проходят радиальные глиальные клетки (клетки Мюллера). Их отростки формируют две пограничные глиальные мембраны – наружную и внутреннюю.Кнутри от центральной ямки (fovea centralis) имеется зона, в которой отсутствуют фоторецепторы сетчатки — т.н. слепое пятно. Основным белком фоторецепторной мембраны (до 95—98 % интегральных белков) является зрительный пигмент родопсин, который обеспечивает поглощение света. Колбочки содержат три типа зрительных пигментов (колбочковый опсин), Один из пигментов — йодопсин — чувствителен к длинноволновой части спектра.

Билет 44

Пищев в жел

1. Мезодерма или мезобласт — средний зародышевый листок у многоклеточных животных (кроме губок и кишечнополостных). Располагается между эктодермой и энтодермой. Из мезодермы впоследствии формируются хорда, хрящевой и костный скелет, мышцы, почки, кровеносные сосуды.Делится на: 1) дорзальная часть получает название сомит. 2) вентральная часть — спланхнотом расщепляется на 2 листка — париетальный прилежит к эктодерме и висцеральный — прилежит к энтодерме., они замыкаются и заключают вторичную полость тела — целом;3) участок, соединяющий сомиты и спланхнотом, — сегментная ножка. Каждый сомит в дальнейшем подразделяется на 3 части: склеротом — костная и хрящевая ткань осевого скелета, миотом — поперечно-полосатая скелетная мышечная ткань, и дерматом — соединительнотканная основа кожи.Мезенхима — эмбриональный зачаток, служащий источником развития соединительной ткани, крови, скелета и гладкой мышечной ткани. Мезенхима состоит из рыхло лежащих клеток с отростками и межклеточной жидкости, располагающихся в первичной полости тела в промежутках между зародышевыми листками.

2.Нервные волокна-отростки нейронов,покрытые глиальными оболочками 2 в:безмиелиновые и миелин,состоят из осевого цилиндра.Безмиелиновые-у взрослых в составе вегетативной нервн системы и хар-ся низк скоростью проведения нервн импульсов(0.5-2м/с).Образ-ся путем погружения осевого цилиндра в цитоплазму леммоцитов.Плазмолемма леммоцита прогибается,окружая аксон и образ мезаксон.10-20 осев цилиндров называются волокном кабельного типа,покрыт базальной мембраной.Миелиновые-встречаются в ЦНС и ПНС.Выс скорость проведения нервн импульсов(5-120м/с).обычно толще безмиелиновых и содержат осевые цилиндры большого диаметра.Осев цилиндр окружен особ миелин оболочкой,вокруг котор тонк слой,включ-й цитоплазму и ядро леммоцита нейролемма.Снаружи покрыто базальн мембраной,возник врезультате слияния многочислен мембран-х витков(пластин).Образование миелин оболочки-при взаимодействии осевого цилиндра и кл-к олигодендроглии с некотор различиями в ПНС и ЦНС.В процессе миелинизации аксон погружается в желобок на поверхности нейролеммоцита. Края желобка смыкаются. При этом образуется двойная складка плазмолеммы нейролеммоцита — мезаксон. Мезаксон удлиняется, концентрически наслаивается (как бы накручивается) на осевой цилиндр и образует вокруг него плотную слоистую зону — миелиновый слой.Регенерация зависит от места травмы. Как в центральной, так и в периферической нервной системе погибшие нейроны не восстанавливаются. Полноценной регенерации нервных волокон в центральной нервной системе обычно не происходит, но нервные волокна в составе периферических нервов обычно хорошо регенерируют.

3. Маточные трубы (яйцеводы, Фаллопиевы трубы) — парные органы, по которым яйцо из яичников проходит в матку.Развитие. Маточные трубы развиваются из верхней части парамезонефральных протоков (мюллеровых каналов).Строение. Стенка яйцевода имеет три оболочки: слизистую, мышечную и серозную. Слизистая оболочка собрана в крупные разветвленные продольные складки. Она покрыта однослойным призматическим эпителием, который состоит из двух видов клеток — реснитчатых и железистых, секретируюших слизь. Собственная пластинка слизистой оболочки представлены рыхлой волокнистой соединительной тканью. Мышечная оболочка состоит из внутреннего циркулярного или спирального слоя и наружного продольного. Снаружи яйцеводы покрыты серозной оболочкой.Матка (uterus) — мышечный орган, предназначенный для осуществления внутриутробного развития плода.Развитие. Матка и влагалище развиваются у зародыша из дистального отдела левого и правого парамезонефральных протоков в месте их слияния. В связи с этим вначале тело матки характеризуется некоторой двурогостью, но к 4-му месяцу внутриутробного развития слияние заканчивается и матка приобретает грушевидную форму.Строение. Стенка матки состоит из трех оболочек: слизистой оболочки - эндометрия;мышечной оболочки - миометрия;серозной оболочки - периметрия.В эндометрии различают два слоя — базальный и функциональный. Строение функционального (поверхностного) слоя зависит от овариальных гормонов и претерпевает глубокую перестройку на протяжении менструального цикла. Слизистая оболочка матки выстлана однослойным призматическим эпителием.В слизистой оболочке находятся многочисленные маточные железы, простирающиеся через всю толщу эндометрия и даже проникающие в поверхностные слои миометрия. По форме маточные железы относятся к простым трубчатым.Вторая оболочка матки - миометрий — состоит из трех слоев гладких мышечных клеток — внутреннего подслизистого (stratum submucosum), среднего сосудистого с косопродольным расположением миоцитов (stratum vasculosum), богатого сосудами, и наружного надсосудистого (stratum supravasculosum) также с косопродольным расположением мышечных клеток, но перекрестным по отношению к сосудистому слою. Такое расположение мышечных пучков имеет определенное значение в регуляции интенсивности циркуляции крови в течение менструального цикла.Периметрий покрывает большую часть поверхности матки. Не покрыты брюшиной лишь передняя и боковые поверхности надвлагалищной части шейки матки. В формировании периметрия принимают участие мезотелий, лежащий на поверхности органа, и рыхлая волокнистая соединительная ткань, составляющие прослойку, примыкающую к мышечной оболочке матки.

Билет № 37

Поджел ж, кортьев орг

1.Оболочку, покрывающую клетку снаружи, называют клеточной мембраной. Внутри клетки часто встречаются пузырьки, оболочка которых очень похожа на клеточную мембрану. Их называют мембранными пузырьками, или вакуолями. Различные части клетки называются органоидами. На рисунке видны срезы нескольких органоидов: ядра, эндоплазматической сети (ЭПС), комплекса Гольджи, митохондрий, двух центриолей (вместе они имеют название "клеточный центр"). Внутреннее содержимое клетки, за исключением ядра, называют цитоплазмой. морфологи­ческий признак — наличие ядра. Мито́з— непрямое деление клетки, наиболее распространенный способ репродукции эукариотических клеток. Биологическое значение митоза состоит в строго одинаковом распределении хромосом между дочерними ядрами, что обеспечивает образование генетически идентичных дочерних клеток и сохраняет преемственность в ряду клеточных поколений. На основании морфологических особенностей митоз условно подразделяется на стадии: профазу, прометафазу, метафазу, анафазу, телофазу. Интерфаза  стадия клеточного цикла между двумя делениями клетки.Интерфаза включает периоды: А)  G1-период – пресинтетический – рост клеток и увеличение количества  РНК восстановление набора органелл; Б)  S  -период – синтетический – (узловой) период удвоения (редупликации) ДНК;В)  G2-период – постсинтетический (премитотический) – синтез иРНК и  созревание центриолей;Г)  G0-период –  период покоя встречается в клетках которые временно вышли из клеточного цикла (камбиальные и стволовые клетки, нейроны головного мозга, кардиомиоциты. Профаза   - фаза митоза при которой в ядре происходит: А) лизис кариолеммы; Б) спирализация хромасом; В) формирование веретена деления; Г) расхождение центриолей к полюсам; Метафаза - фаза митоза при которой хромосомы лежат в Экваториальной   плоскости, образуя звезду (метафазную пластинку) Анафаза - фаза митоза при которой наблюдается расхождение дочерних  хроматид к полюсам клетки. Телофаза - фаза митозаделение цитоплазмы на две клетки (цитокинез) путём образования перетяжки и восстановления двух новых интерфазных ядер дочерних клеток.

2.ИММУНОЦИТЫ - клетки организма, осуществляющие иммунный ответ. К иммуноцитам относятся иммунокомпетентные (Т- и В-лимфоциты) и фагоцитирующие клетки (мононуклеарные фагоциты, полиморфно-ядерные гранулоциты и мелкие клетки центральной нервной системы - микроглия). Образуются, размножаются и созревают в красном костном мозге, лимфоидных органах (тимусе, фабрициевой сумке, лимфатических узлах, селезенке и др.).В зависимости от механизма уничтожения антигена различают клеточный иммунитет и гуморальный иммунитет.При клеточном иммунитете эффекторными клетками являются цитотоксические Т-лимфоциты, или лимфоциты-киллеры (убийцы). Они непосредственно участвуют в уничтожении чужеродных клеток других органов или патологических собственных (например, опухолевых) клеток, и выделяют литические вещества. Такая реакция лежит в основе отторжения чужеродных тканей в условиях трансплантации или при действии на кожу химических (сенсибилизирующих) веществ, вызывающих повышенную чувствительность (т.н. гиперчувствительность замедленного типа) и другие реакции.При гуморальном иммунитете эффекторными клетками являются плазматические клетки, которые синтезируют и выделяют в кровь антитела.

3.ОРГАН СЛУХА состоит из наружного, среднего и внутреннего уха. Мы подробно остановимся в строении только внутреннего уха. У эмбриона человека орган слуха и равновесия закладываются вместе, из эктодермы. Из эктодермы образуется утолщение — слуховая плакода, которая вскоре превращается в слуховую ямку, а затем в слуховой пузырек и отрывается от эктодермы и погружается в подлежащую мезенхиму. Слуховой пузырек изнутри выстлан многорядным эпителием и вскоре перетяжкой делится на 2 части — из одной части формируется улитковый перепончатый лабиринт (т.е. слуховой аппарат), а из другой части — мешочек, маточка и 3 полукружных канальцев (т.е. орган равновесия). В многорядном эпителии перепончатого лабиринта клетки дифференцируются в рецепторные сенсоэпителиальные клетки и поддерживающие клетки. Эпителий Евстахиевой трубы соединяющей среднее ухо с глоткой и эпителий среднего уха развиваются из эпителия 1-го жаберного кармана. Строение органа слуха (внутреннего уха). Рецепторная часть органа слуха находится внутри перепончатого лабиринта, расположенного в свою очередь в костном лабиринте, имеющего форму улитки — спиралевидно закрученной в 2,5 оборота костной трубки. По всей длине костной улитки идет перепончатый лабиринт. На поперечном срезе лабиринт костной улитки имеет округлую форму, а поперечный лабиринт имеет треугольную форму. Стенки перепончатого лабиринта в поперечном срезе образованы: а) основание треугольника — базиллярная мембрана (пластинка), состоит из отдельных натянутых струн (фиб-риллярные волокна). Длина струн увеличивается в направлении от основания улитки к верхушке. Каждая стру-на способна резонировать на строго определенную частоту колебаний — струны ближе к основанию улитки (более короткие струны) резонируют на более высокие частоты колебаний (на более высокие звуки), струны ближе к верхушке улитки — на более низкие частоты колебаний (на более низкие звуки). б) наружная стенка — образована сосудистой полоской, лежащей на спиральной связке. Сосудистая полоска — это многорядный эпителий, имеющий в отличие от всех эпителиев организма собственные кровеносные сосуды; этот эпителий секретирует эндолимфу, заполняющую перепончатый лабиринт. в) верхнемедиальная стенка — образована вестибулярной мембраной, покрытой снаружи эндотелием, изнутри — однослойным плоским эпителием. Пространство костной улитки выше вестибулярной мембраны называется вестибулярной лестницей, ниже базиллярной мембраны — барабанной лестницей. Вестибулярная и барабанная лестница заполнены перилимфой и на верхушке костной улитки сообщаются между собой. У основания костной улитки вестибулярная лестница заканчивается овальным отверстием, закрытым стремечком, а барабанная лестница — круглым отверстием, закрытым эластической мембраной. Рецепторная часть органа слуха называется спиральным органом или кортиевым органом и располагается на базиллярной мембране. Спиральный (кортиев) орган состоит из следующих элементов: 1. Сенсорные волосковые эпителиоциты — слегка вытянутые клетки с закругленным основанием, на апикальном конце имеют микроворсинки — стереоцилии. К основанию сенсорных волосковых клеток подходят и образуют синапсы дендриты 1-х нейронов слухового пути, тела которых лежат в толще костного стержня — веретена костной улитки в спиральных ганглиях. Сенсорные волосковые эпителиоциты делятся на внутренние грушевидные и наружные призматические. Наружные волосковые клетки образуют 3-5 рядов, а внутренние — только 1 ряд. Между внутренними и наружными волосковыми клетками образуется Кортиев тоннель. Над микроворсинками волосковых сенсорных клеток нависает покровная (текториальная) мембрана. 2. Поддерживающие эпителиоциты — располагаются на базиллярной мембране и являются опорой для волосковых сенсорных клеток, поддерживают их. Гистофизиология спирального органа. Звук как колебание воздуха колеблет барабанную перепонку, далее колебание через молоточек, наковальню передается стремечку; стремечко через овальное окно передает колебания в перилимфу вестибулярной лестницы, по вестибулярной лестнице колебание на верхушке костной улитки переходит в перелимфу барабанной лестницы и спускается по спирали вниз и упирается в эластичную мембрану круглого отверстия. Колебания перелимфы барабанной лестницы вызывает колебания струн базиллярной мембраны; при колебаниях базиллярной мембраны волосковые сенсорные клетки колеблются в вертикальном направлении и волосками задевают текториальную мембрану. Сгибание микроворсинок волосковых клеток приводит к возбуждению этих клеток, т.е. изменяется разность потенциалов между наружной и внутренней поверхностью цитолеммы, что улавливается нервными окончаниями на базальной поверхности волосковых клеток. В нервных окончаниях генерируются нервные импульсы и передаются по слуховому пути в корковые центры. Как определяется, дифференцируются звуки по частоте (высокие и низкие звуки) ? Длина струн в базилляр-ной мембране меняется по ходу перепончатого лабиринта, чем ближе к верхушке улитки, тем длиннее струны. Каждая струна настроена резонировать на определенную частоту колебаний. Если низкие звуки — резонируют и колеблятся длинные струны ближе к верхушке улитки и соответственно возбуждаются клетки сидящие на них. Если высокие звуки — резонируют короткие струны расположеные ближе к основанию улитки, возбуждаются волосковые клетки сидящие на этих струнах.

Соседние файлы в предмете Гистология