Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Реферат Электронные лампы и их работа

.pdf
Скачиваний:
366
Добавлен:
11.04.2015
Размер:
1.35 Mб
Скачать

Уральский технический институт связи и информатики (филиал) федерального государственного образовательного бюджетного учреждения высшего профессионального образования "Сибирский государственный университет телекоммуникаций и информатики"

(УрТИСИ ФГОБУ ВПО "СибГУТИ") в г. Екатеринбург

РЕФЕРАТ НА ТЕМУ:

ЭЛЕКТРОННЫЕ ЛАМПЫ И ИХ РАБОТА. УСИЛЕНИЕ СИГНАЛОВ ЗВУКОВОЙ ЧАСТОТЫ С ПОМОЩЬЮ РАДИОЛАМП

Выполнил: Блинков Евгений Михайлович

Студент 1-го курса ВПО Группы ВЕ-31б.

Екатеринбург 2014

Оглавление

 

ГЛАВА-1. ЭЛЕКТРОННЫЕ ЛАМПЫ И ИХ РАБОТА..........................................................................................

2

ИСТОРИЯ СОЗДАНИЯ ЭЛЕКТРОВАКУУМНОЙ РАДИОЛАМПЫ ..............................................................

2

УСТРОЙСТВО ЭЛЕКТРОННОЙ ЛАМПЫ ....................................................................................................

3

КАК РАБОТАЕТ ДИОД...............................................................................................................................

5

КАК РАБОТАЕТ ТРИОД..............................................................................................................................

7

МНОГОЭЛЕКТРОДПЫЕ ЛАМПЫ ............................................................................................................

10

КАТОДЫ РАДИОЛАМП И ИХ ПИТАНИЕ.................................................................................................

13

КОНСТРУКЦИИ, МАРКИРОВКА И ЦОКОЛЕВКА РАДИОЛАМП.............................................................

14

АВТОМАТИЧЕСКОЕ СМЕЩЕНИЕ............................................................................................................

16

ГЛАВА-2. УСИЛЕНИЕ СИГНАЛОВ ЗВУКОВОЙ ЧАСТОТЫ С ПОМОЩЬЮ РАДИОЛАМП. ЛАМПОВЫЙ

 

УСИЛИТЕЛЬ. СЕКРЕТЫ ЛАМПОВОГО ЗВУКА.................................................................................................

17

СЕКРЕТЫ ЛАМПОВОГО ЗВУКА...................................................................................................................

17

ПРИНЦИП РАБОТЫ ЛАМПОВОГО УСИЛИТЕЛЯ ........................................................................................

19

ПРЕДИСЛОВИЕ........................................................................................................................................

19

ОДНОТАКТНЫЙ ЛАМПОВЫЙ УСИЛИТЕЛЬ ...........................................................................................

19

ОДНОТАКТНЫЙ ЛАМПОВЫЙ УСИЛИТЕЛЬ НА ТРИОД-ПЕНТОДЕ 6Ф5П..............................................

19

Описание конструкции и принцип работы...............................................................................

20

Сборка и монтаж.........................................................................................................................

22

Налаживание усилителя.............................................................................................................

23

Допустимые отклонения параметров и номиналов от нормы...............................................

24

ДВУХТАКТНЫЙ ЛАМПОВЫЙ УСИЛИТЕЛЬ.............................................................................................

24

Принцип работы двухтактной схемы. .......................................................................................

24

Простой ламповый двухтактный усилитель. ............................................................................

25

СПИСОК ЛИТЕРАТУРЫ................................................................................................................................

26

1

ГЛАВА-1. ЭЛЕКТРОННЫЕ ЛАМПЫ И ИХ РАБОТА.

В свое время электронная лампа совершила в радиотехнике подлинную революцию: коренным образом изменила конструкции передающих и приемных устройств, увеличила дальность действия их, позволила радиотехнике сделать гигантский шаг вперед и занять почетное место буквально во всех областях науки и техники, производства, в нашей повседневной жизни. Сейчас, когда в радиоэлектронные устройства все более внедряются полупроводниковые приборы, электронные лампы уходят в историю, но они по-прежнему остаются прародителями всех наших современных приборов. Ведь не стоит забывать, что первая в мире ЭВМ (ЭНИАК 1946г.) имела в основе своей конструкции электронные лампы. А что сейчас? Сейчас их заменили полупроводниковые элементы, которые имеют в миллиарды раз меньшие размеры, и как следствие производительность таких машин существенно возросла, а размеры уменьшились. Я выбрал данную тему, чтобы познакомиться с этими, поистине, «ветеранами» радиотехники.

ИСТОРИЯ СОЗДАНИЯ ЭЛЕКТРОВАКУУМНОЙ РАДИОЛАМПЫ

Усилительная радиолампа была изобретена в 1906 году американцем Ли Де Форестом. С началом серийного выпуска радиоламп стали возможны радиовещание и телефонная связь на большие расстояния. В 20-х годах появляются первые радиоприемники на лампах. Затем усилители на лампах начинают использоваться в электропроигрывателях. Расцвет ламповой техники пришелся на 50-е годы. В это время радиоприемники, проигрыватели и телевизоры превратились в по-настоящему массовые продукты. Но тогда же, в 50-х годах, у радиолампы появился соперник: началось производство полупроводниковых усилительных устройств - транзисторов. Поначалу транзисторы использовались только в переносной технике, где были важны такие их преимущества, как малые размеры и скромные потребности в электроэнергии. В 70-х годах в аппаратуру начинают внедряться интегральные микросхемы. В одной микросхеме размером с почтовую марку помещались сначала десятки, потом сотни (а теперь уже и миллионы) транзисторов. Стало легко реализовывать функции, которые для ламповой техники неприемлемы. С появлением микросхем в аудиовидеоаппаратуре начали использоваться цифровые технологии. Однако вплоть до середины 70-х годов ламповая аппаратура превосходила устройства на полупроводниках как минимум по двум параметрам.

Во-первых, максимальная выходная мощность у ламповых усилителей была выше. Вовторых, они вносили меньше искажений в сигнал. Вот почему до середины 70-х годов высококачественная аудиоаппаратура делалась исключительно на лампах. Кроме того,

выпускалась комбинированная аппаратура, где большинство узлов выполнено на транзисторах, но там, где были необходимы большая мощность и большое напряжение, использовались лампы. У транзисторов выше коэффициент полезного действия. Это значит, что при равной потребляемой мощности у транзисторного усилителя выходная мощность выше, чем у лампового. В итоге транзисторная аппаратура обогнала по выходной мощности ламповую. Последним оплотом ламповой техники были телевизоры. Ламповые телевизоры выпускались вплоть до конца 80-х годов. Замену ламп на транзисторы и микросхемы подстегнуло цветное телевидение. Уже столь сложное устройство, как цветной телевизор, будучи выполненным на лампах, оказывается недостаточно надежным и потребляет очень много электроэнергии. Но в индустрии звукозаписи в начале 80-х годов произошли события, которые заложили основу для триумфального возвращения радиолампы.

2

В начале 80-х годов появился CD, который стал первым массовым цифровым носителем для записи звука. Сначала продвижение CD было четко ориентировано на людей, серьезно увлекающихся музыкой. И здесь не обошлось без некоторых накладок. Меломаны покупали CD-проигрыватели, подключали к ним имевшиеся транзисторные усилители, изначально предназначенные для работы с проигрывателями для «винила» и... испытывали разочарование. Сигнал, выходящий из винилового проигрывателя, гладкий, его динамический диапазон (то есть соотношение между мощностями самого громкого и самого тихого звуков) был сужен при записи, чтобы поместиться в дорожку пластинки. Транзисторный усилитель хорошо справлялся с таким сигналом. А что получалось на выходе CD-проигрывателя? Динамический диапазон широкий, в сигнале много резких перепадов. Работая с таким сигналом, транзисторный усилитель вносил в него значительные искажения. И вот в какой-то светлой голове возникла мысль, а не подсоединить ли CD-проигрыватель к ламповому усилителю? На первый взгляд такое решение выглядело дикостью - подключить ультрасовременное устройство к аппарату, выполненному из компонентов, признанных морально устаревшими. Но результаты превзошли все ожидания - получилось чистое звучание, CD смог раскрыть свои богатые возможности. Вопреки расхожему мнению, именно появлению CD, а не ностальгической моде на «винил», и обязана радиолампа своим триумфальным возвращением. В 80-е годы американские меломаны в основной своей массе перешли с «винила» на CD. Соответственно возник большой спрос на ламповые усилители. Но к тому моменту производство радиоламп для широкого применения в США уже было прекращено. Где можно было найти радиолампы? Оказывается, в СССР и Китае. Неповоротливая советская электронная промышленность продолжала производить радиолампы в большом количестве. Что касается Китая, то в 80-е годы он еще плелся в хвосте прогресса в электронной промышленности, и там радиолампы тоже производились. Было создано американо-советское предприятие Sovtek, которое начало поставлять советские радиолампы в США. И до сих пор этот бренд занимает серьезные позиции на американском рынке радиоламп. Сейчас аппаратуру на радиолампах Sovtek производит, например, американская компания Conrad-Johnson. Кроме Sovtek в продукции американских фирм широко используются радиолампы знаменитого санкт-петербургского завода «Светлана». Причем выбор на продукцию предприятия из бывшего СССР пал не из-за цены, а потому, что оно обеспечивает высокое качество звука. Существуют и отечественные производители ламповых усилителей. Главным образом это небольшие фирмы, которые выпускают аппаратуру мелкими партиями или по индивидуальным заказам.

УСТРОЙСТВО ЭЛЕКТРОННОЙ ЛАМПЫ

Любая радиолампа представляет собой стальной, стеклянный или керамический баллон, внутри которого на металлических стойках укреплены электроды. Пространство в баллоне сильно разрежено, т. е. там почти нет воздуха. Его откачивают через небольшой отросток, имеющийся в нижней или верхней части баллона. Сильное разрежение воздуха внутри баллона - вакуум - непременное условие для работы радиолампы.

В каждой радиолампе обязательно есть катод - отрицательный электрод, являющийся источником электронов в лампе, и анод - положительный электрод. Катодом может быть вольфрамовый волосок, подобный нити накала электролампочки, или металлический цилиндрик, подогреваемый нитью накала, а анодом - металлическая пластинка, а чаще коробочка, имеющая форму цилиндра или параллелепипеда. Вольфрамовую нить, выполняющую роль катода, называют также нитью накала.

На схемах баллон лампы обозначают в виде окружности, катод - дужкой, вписанной в окружность, анод - короткой чертой, расположенной над катодом, а их выводы - линиями,

3

выходящими за пределы окружности. Радиолампы, содержащие только катод и анод, называют двух электродными или диодами.

На Рис-1 показано схематическое обозначение двухэлектродной лампы - диода. Через специальную колодку с гнездами - ламповую панельку - радиолампа соединяются с другими элементами радиотехнического устройства.

В большинстве радиоламп между катодом и анодом имеются спирали из тонкой проволоки, называемые сетками. Они окружают катод и, не соприкасаясь, располагаются на разных

расстояниях от него. В зависимости от назначения число сеток в лампе может быть от одной до пяти. По общему числу электродов, включая катод и анод, различают лампы трехэлектродные, четырехэлектродные, пятиэлектродные и т. д. Соответственно их называют триодами (с одной сеткой), тетродами (с двумя сетками), пентодами (с тремя сетками).

Графическое обозначение одной из таких ламп - триода - показано на Рис-2. Эта лампа отличается от диодов наличием в ней спирали-сетки. На схемах сетки обозначают штриховыми линиями, расположенными между катодом и анодом.

Триоды, тетроды и пентоды - универсальные радиолампы. Их применяют для усиления переменных и постоянных токов и напряжений, в качестве детекторов, для генерирования

электрических колебаний разных частот и многих других целей. Принцип работы радиолампы основан на направленном движении в ней электронов. «Поставщиком» же электронов внутри лампы является катод, нагретый до Температуры 800-2000°С.

В чем сущность этого явления?

Если кастрюлю, наполненную водой, поставить на огонь, то по мере нагревания частицы воды начнут двигаться все быстрее и быстрее. Наконец, вода закипит. При этом частицы воды будут двигаться с настолько большими скоростями, что некоторые из них оторвутся от поверхности воды и покинут ее - вода начнет испаряться. Нечто подобное наблюдается и в электронной лампе. Свободные электроны, содержащиеся в раскаленном металле катода, движутся с огромными скоростями. При этом некоторые из них покидают катод, образуя вокруг него электронное «облако». Это явление испускания, или излучения, катодом электронов называют термоэлектронной эмиссией. Чем сильнее раскален катод, тем больше электронов он испускает, тем гуще электронное облако. Когда говорят, что «лампа потеряла эмиссию», это значит, что с поверхности ее катода свободные электроны по какойто причине вылетают в очень малом количестве. Лампа с потерянной эмиссией работать не будет.

4

Однако чтобы электроны могли вырываться из катода, надо не только нагреть его, но и освободить окружающее пространство от воздуха. Если этого не сделать, вылетающие электроны потеряют скорость, «завязнут» в молекулах воздуха. Поэтому-то в электронной лампе и создают вакуум. Откачивать воздух необходимо еще и потому, что при высокой температуре катод поглощает кислород воздуха, окисляется и быстро разрушается. К этому нужно добавить, что на поверхность катода наносят слой окислов бария, стронция и кальция, обладающий способностью излучать электроны при сравнительно низкой температуре нагрева.

КАК РАБОТАЕТ ДИОД

Самой простой радиолампой является вакуумный диод. (Рис-3.)

Чтобы разогреть нить накала, подключим к ее выводам источник накального напряжения Uн. Образуется цепь накала. Вторую батарею U соединим отрицательным полюсом с одним с катодом, а положительным - с анодом. Образуется вторая цепь - анодная, состоящая из участка катод - анод, источника анодного напряжения U и соединительных проводников. Если включить в нее миллиамперметр, стрелка прибора укажет на наличие тока в этой цепи.

Естественно, может возникнуть вопрос: почему в анодной цепи течет ток? Ведь между катодом и анодом нет электрического соединения.

Отвечаю: подключив источник анодного напряжения U, мы тем самым создали на аноде положительный заряд, а на катоде - отрицательный. Между ними возникло электрическое поле, под действием которого электроны, испускаемые катодом, устремляются к положительно заряженному аноду. Достигнув анода, электроны движутся по соединительным проводникам к положительному полюсу источника анодного напряжения U, а избыточные электроны с отрицательного полюса источника текут к катоду.

Образование в анодной цепи диода потока электронов можно сравнить с таким явлением. Если над кипящей водой поместить крышку кастрюли или тарелку, то образовавшийся пар будет на ней охлаждаться и «сгущаться» в капельки воды. С помощью воронки мы можем эту воду вернуть в кастрюлю. Получается как бы замкнутая цепь, по которой движутся частицы воды.

Ток анодной цепи называют анодным током, а напряжение между анодом и катодом лампы - анодным напряжением. Наряду с термином «анодное напряжение» применяют также термины «напряжение на аноде», «напряжение анода». Все эти термины равнозначны: говоря «анодное напряжение», «напряжение на аноде» или «напряжение анода», подразумевают напряжение, -действующее между анодом и катодом. Если полюсы анодной

5

батареи или источника тока присоединены непосредственно к катоду и аноду лампы, то анодное напряжение будет равно напряжению источника тока.

Будет ли в анодной цепи диода протекать ток, если положительный полюс анодной батареи соединить с катодом, а отрицательный - с анодом? Конечно, нет. Ведь анод в этом случае имеет отрицательный заряд. Он будет отталкивать электроны, испускаемые катодом, и никакого тока в этой цепи не будет.

Итак, двухэлектродная электронная лампа, как и полупроводниковый диод, обладает свойством односторонней проводимости тока. Но она в отличие от полупроводникового диода пропускает через себя только прямой ток, т. е. только в одном направлении - от катода к аноду. В обратном направлении, т. е. от анода к катоду, ток идти не может. В этом отношении радиолампа, бесспорно, превосходит полупроводниковый диод, через который течет небольшой обратный ток.

Что влияет на величину анодного тока диода? Если катод имеет постоянный накал и излучает беспрерывно одно и то же количество электронов, то величина анодного тока зависит только от анодного напряжения. При небольшом анодном напряжении анода достигнут лишь те электроны, которые в момент вылета из катода обладают наиболее высокими скоростями. Другие, менее «быстрые» электроны останутся возле катода. Чем выше анодное напряжение, тем больше электронов притянет к себе анод, тем значительнее будет анодный ток. Однако не следует думать, что повышением анодного напряжения можно бесконечно увеличивать анодный ток. При некотором достаточно высоком анодном напряжении все электроны, излучаемые катодом, будут попадать на анод и при дальнейшем увеличении напряжения на аноде анодный ток перестаёт расти. Это явление называют насыщением анода. Для каждой лампы существует некоторый предельный анодный ток, превышение которого ведет к нарушению свойства катода

испускать электроны. То есть катод радиолампы потеряет эмиссию:

Излучение электронов с поверхности тела в окружающее пространство под воздействием внешней энергии называется электронной эмиссией.

Увеличить эмиссию катода можно повышением напряжения на его накале. Но при этом продолжительность жизни лампы резко падает, а при чрезмерно большом накале катод быстро теряет эмиссию или совсем разрушается.

6

А что происходит в цепи анода, когда в ней действует переменное напряжение?

Обратимся к Рис. 4. Здесь, как и в предыдущих примерах, катод накаляется током батареи GBн. На анод лампы подается синусоидальное переменное напряжение, источником которого может быть, например, электроосветительная сеть. В этом случае напряжение на аноде периодически изменяется по величина и знаку (Рис. 4.а).

Так как диод обладает односторонней проводимостью, ток через него идет только при положительном напряжении на его аноде. Говоря иными словами, диод пропускает положительные полуволны (Рис. 4.б) и не пропускает отрицательных полуволн переменного тока. В результате в анодной цепи течет ток одного направления, но пульсирующий с частотой переменного напряжения на аноде. Происходит выпрямление переменного тока.

Если в анодную цепь включить нагрузочный резистор Rн, через него также будет течь, выпрямленный диодом ток. При этом на одном конце резистора, соединенном с катодом, будет плюс, а на другом - минус выпрямленного напряжения. Это напряжение, создающееся на резисторе, может быть подано в другую цепь, для питания которой необходим постоянный ток.

Двухэлектродные лампы, как и полупроводниковые точечные диоды, применяют для детектирования высокочастотных колебаний, раньше их часто использовали в выпрямителях для питания радиоаппаратуры. Лампы, предназначенные для работы в выпрямителях, называют кенотронами.

КАК РАБОТАЕТ ТРИОД

А теперь поместим между катодом и анодом сетку. Получится триод. Присоединим к его электродам источники накального и анодного напряжения. В анодную цепь включим миллиамперметр, чтобы следить за всеми изменениями тока в этой цепи. (Рис-5.)

7

Сетку временно соединим проводником с катодом (Рис-5.а.). В этом случае сетка, имея нулевое напряжение относительно катода, почти не оказывают влияния на анодный ток: анодный ток будет примерно таким же, как в случае с диодом.

Удалим проводник, замыкающий сетку на катод, и включим между ними батарею с небольшим напряжением, но так, чтобы ее отрицательный полюс был соединен с катодом, а положительный - с сеткой (Рис-5.б.). Эту батарею назовем сеточной и обозначим GBc. Теперь сетка находится под положительным напряжением относительно катода. Она стала как бы вторым анодом. Образовалась новая цепь - сеточная, состоящая из участка сетка - катод, батареи GBc и соединительных проводов. Имея положительный заряд, сетка притягивает к себе электроны. Но набравшие скорость электроны будут перехвачены силой притяжения более высокого, чем на сетке, анодного напряжения. В результате анодный ток станет больше, чем тогда, когда сетка была соединена непосредственно с катодом. Такой же прирост анодного тока можно было бы получить за счет повышения анодного напряжения, но для этого пришлось бы в анодную батарею добавить в несколько раз больше элементов, чем имеет сеточная батарея.

Если добавить к сеточной батарее еще два-три элемента и тем самым увеличить напряжение на сетке, анодный ток еще больше возрастет. Значит, положительное напряжение на сетке помогает аноду притягивать электроны, способствует росту анодного тока. При этом некоторая часть электронов оседает и на сетке. Но они сразу же «стекают» через сеточную батарею на катод. Появляется небольшой сеточный ток - ток сетки.

С повышением положительного напряжения на сетке увеличивается анодный ток лампы, но одновременно растет и ток сетки. Может случиться, что при некотором довольно большом напряжении на сетке ток в ее цепи станет больше анодного. Это объясняется тем, что сетка, находясь ближе к катоду, притягивает к себе электроны сильнее, чем удаленный анод. В этом случае вылетевшие из нити электроны так разделятся между сеткой и анодом, что большая часть их придется на долю сетки. Такое явление крайне нежелательно для работы лампы - она может испортиться.

Теперь поменяем местами полюсы батареи GBc, чтобы на сетке относительно катода было отрицательное напряжение (Рис-5.в.). Посмотрим на стрелку миллиамперметра. Она покажет значительно меньший анодный ток, чем в предыдущем эксперименте. Почему анодный ток резко уменьшился? На пути электронов оказался отрицательно заряженный электрод, который препятствует движению их к аноду, отталкивает электроны обратно к катоду. Часть электронов, обладающих наибольшими скоростями, все же «проскочит» через отверстия в сетке и достигнет анода, но число их будет во много раз меньше, чем при положительном напряжении на сетке. Этим и объясняется резкое ослабление анодного тока.

По мере увеличения отрицательного заряда на сетке ее отталкивающее действие на электроны будет возрастать, а анодный ток - уменьшаться. А при некотором достаточно большом отрицательном напряжении на сетке она не пропустит к аноду ни одного электрона - анодный ток вообще исчезнет (Рис-5.г.). Следовательно, отрицательное напряжение на сетке «закрывает» лампу.

8

Изменение напряжения на сетке оказывает в несколько раз более сильное влияние на анодный ток, чем такое же изменение напряжения на аноде лампы. Сетка управляет потоком электронов, летящих от катода к аноду лампы. Поэтому сетку называют управляющей. Это свойство триода и используется для усиления электрических колебаний. (Рис-6.)

Работу триода как усилителя можно иллюстрировать схемой и графиками, показанными на Рис-6. Здесь к участку сетка - катод лампы, т. е. в цепь сетки, подается переменное напряжение Uвх, которое надо усилить. Источником этого напряжения может быть детекторный приемник, микрофон, звукосниматель. В анодную цепь лампы включена анодная нагрузка - резистор Rа. Пока в цепи сетки нет переменного напряжения (участок на графиках), в анодной цепи течет не изменяющийся по величине ток Iа, соответствующий нулевому напряжению на сетке. Это среднее значение анодного тока - ток покоя. Но вот в цепи сетки начало действовать переменное напряжение (на графиках - участки

аб).

Теперь сетка периодически заряжается то положительно, то отрицательно, а анодный ток начинает колебаться: при положительном напряжении на сетке он возрастает, при отрицательном - уменьшается. Чем больше изменяется напряжение на сетке, тем значительнее амплитуда колебаний анодного тока.

При этом на выводах анодной нагрузки Rа появляется переменная составляющая напряжения, которая может быть подана в цепь сетки другой такой же лампы и еще раз усилена ею. Если в цепь сетки подавать напряжение звуковой частоты, скажем, от детекторного приемника, а в анодную цепь вместо резистора Rа включить головные телефоны, то усиленное лампой напряжение заставит телефоны звучать во много раз громче, чем при подключении к детекторному приемнику.

Это явление называется усилением лампы…

Какое усиление может дать лампа? Это зависит от ее конструкции, в частности от густоты и расположения сетки относительно катода. Чем сетка гуще и ближе расположена к катоду, тем сильнее сказывается влияние ее напряжения на электронный поток внутри лампы, тем значительнее колебания анодного тока, тем, следовательно, лампа дает большее усиление. Выпускаемые нашей промышленностью триоды в зависимости от их назначения обладают

9