Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

shpora_fizika

.doc
Скачиваний:
32
Добавлен:
13.04.2015
Размер:
1.68 Mб
Скачать

41). Прохождение частицы сквозь потенциальный барьер, туннельный эффект

Потенциальным барьером называется область пространства, где потенциальная энергия выше, чем в окружающем пространства.Рассмотрим простейший потенциальный барьер прямоугольной формы (рис. 298, а) для одномерного (по оси х) движения частицы. Для потенциального барьера прямо­угольной формы высоты U и ширины l можем записать

Если Е>U0, то частица пролетает над барьером, в противном случае она отталкивается и летит обратно.

Уравнение Шредингера для стационарных состояний для каждой из выде­ленных на рис, области имеет вид

                                  

Общие решения этих дифференциальных уравнений:

                                      

                                          

                                     

                          

Таким образом, квантовая механика приводит к принципиально новому специфи­ческому квантовому явлению, получившему название туннельного эффекта, в резуль­тате которого микрообъект может «пройти» сквозь потенциальный барьер.

Для описания туннельного эффекта используют понятие коэффициента прозрач­ности D потенциального барьера, определяемого как отношение плотности потока прошедших частиц к плотности потока падающих. Можно показать, что Так же важен и коэффициент отражения

Для того чтобы найти коэффициент прозрачности прямоугольного потенциального барьера при U0 нужно найти: и получаем

                                          

где U  высота потенциального барьера, Е — энергия частицы, l — ширина барьера, D0  постоянный множитель, который можно приравнять единице.

43). Опыт Штерна — Герлаха — опыт немецких физиков  Штерна и  Герлаха,. Опыт подтвердил наличие у атомов спина (изначально в эксперименте участвовали атомы серебра, а потом и других металлов) и факт пространственного квантования направления их магнитных моментов.

Опыт состоял в следующем: пучок атомов серебра пропускали через сильно неоднородное магнитное поле, создаваемое мощным постоянным магнитом. При прохождении атомов через это поле, в силу обладания ими магнитных моментов, на них действовала зависящая от проекции спина на направление магнитного поля сила, отклонявшая летящие между магнитами атомы от их первоначального направления движения. Причём, если предположить, что магнитные моменты атомов ориентированы хаотично (непрерывно), то тогда на расположенной далее по направлению движения атомов пластинке должна была проявиться размытая полоса. Однако вместо этого на пластинке образовались две достаточно чёткие узкие полосы, что свидетельствовало в пользу того, что магнитные моменты атомов вдоль выделенного направления принимали лишь два определённых значения, что подтверждало предположение квантово-механической теории о квантовании магнитного момента атомов.

Позднее с аналогичными результатами были проделаны опыты для пучков атомов других металлов, а также пучков протонов и электронов. Эти опыты доказали существование магнитного момента у рассмотренных частиц и показали их квантовую природу, явив собой доказательство постулатов квантовой теории.

Спин  — собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. Спином называют также собственный момент импульса атомного ядра или атома; в этом случае спин определяется как векторная сумма (вычисленная по правилам сложения моментов в квантовой механике) спинов элементарных частиц, образующих систему, и орбитальных моментов этих частиц, обусловленных их движением внутри системы.

Спин измеряется в единицах  (приведённой постоянной Планка, или постоянной Дирака) и равен  где J — характерное для каждого сорта частиц целое (в том числе нулевое) или полуцелое положительное число — так называемое спиновое квантовое число, которое обычно называют просто спином (одно из квантовых чисел).

Спин-орбитальное взаимодействие — в квантовой физике взаимодействие между движущейся частицей и её собственным магнитным моментом, известным как спин. Наиболее часто встречающимся примером такого взаимодействия является взаимодействие электрона, находящегося на одной из орбит в атоме, с собственным спином. Такое взаимодействие, в частности, приводит к возникновению так называемой тонкой структуры энергетического спектра электрона и расщеплению спектроскопических линий атома.

44). Квантовые числа электрона

Квантовое число n – главное. Оно определяет энергию электрона в атоме водорода и одноэлектронных системах (He+, Li2+ и т. д.). В этом случае энергия электрона где n принимает значения от 1 до ∞. Чем меньше n, тем больше энергия взаимодействия электрона с ядром. При n = 1 атом водорода находится в основном состоянии, при n > 1 – в возбужденном.

В многоэлектронных атомах электроны с одинаковыми значениями n образуют слой или уровень, обозначаемый буквами K, L, M, N, O, P и Q. Буква K соответствует первому уровню, L – второму и т. д.

Орбитальное квантовое число l характеризует форму орбиталей и принимает значения от 0 до n – 1. Кроме числовых l имеет буквенные обозначения

S=0, p=1,d=2,f=3,g=4…

Электроны с одинаковым значением l образуют подуровень.

Квантовое число l определяет квантование орбитального момента количества движения электрона  в сферически симметричном кулоновском поле ядра.

Квантовое число ml называют магнитным. Оно определяет пространственное расположение атомной орбитали и принимает целые значения от –l до +l через нуль, то есть 2l + 1 значений. Расположение орбитали характеризуется значением проекции вектора орбитального момента количества движения Mz на какую-либо ось координат (обычно ось z):

Спиновое квантовое число ms имеет только два значения ms = ±1/2, представляющие собой две проекции углового момента электрона на выделенную ось. Электроны с разными ms обозначаются стрелками, направленными вверх  и вниз .

При́нцип Па́ули (принцип запрета) — один из фундаментальных принципов квантовой механики, согласно которому два и более тождественных фермиона (частиц с полуцелым спином) не могут одновременно находиться в одном квантовом состоянии

Принцип Паули можно сформулировать следующим образом: в пределах одной квантовой системы в данном квантовом состоянии может находиться только одна частица, состояние другой должно отличаться хотя бы одним квантовым числом.

В статистической физике принцип Паули иногда формулируется в терминах чисел заполнения: в системе одинаковых частиц, описываемых антисимметричной волновой функцией, числа заполнения могут принимать лишь два значения 

Периодическая система элементов Менделеева. Менделеев открыл, что физические и химические свойства элементов повторяются периодически-периодический закон. Долго не могли понять почему так, объясняет квантовая механика. Рассмотрим электронное состояние в атоме, учитывая что е занимают нижние энергетические слои, которые квантованы. В сложных атомах энергия е зависит от n и l(n-формирует электронные уровни; l-форму электронного облака). Выделим электронную конфигурацию т.е. состояния е с одинаковыми n и l эти е образуют подоболочку; обозначается цифрой (значение n) и буквой (значение l). l: 0s; 1p; 2d; 3f; 4g. Энергетические уровни с большим числом n могут быть ниже уровней с меньшим n (ведь энергия зависит от l т.е. период заполнен не полностью). Разных значений m может принимать 2l+1, а разных электронных состояний с одинаковыми l и n будет 2*(2l+1), т.к. ms=.

45). Магнитный момент атома. В сложном многоэлектронном атоме каждый из  электронов обладает орбитальным и спиновым механическим и магнитным моментами. При сложении моментов отдельных электронов в результирующий момент атома возможны два случая.

1. Орбитальный и спиновой моменты каждого электрона складываются в результирующий момент, которые уже затем бъединяются в суммарный момент атома. Такой вид связи называется  связью. Обычно такая связь наблюдается у тяжелых атомов. 2. Наиболее часто встречающаяся у атомов  связь (связь Рассел - Саундерса) осуществляется по следующей схеме: а) Все орбитальные механические моменты отдельных электронов складываются в орбитальный момент, величина которого определяется квантовым числом  суммарного орбитального момента атома. Число  всегда является целым числом либо нулем.

б) Спиновые моменты импульса всех электронов многоэлектронного атома складываются в суммарный спиновой момент  При этом в атомах с четным числом электронов квантовое число  принимает все целые значения от нуля, когда спины электронов попарно компенсируют друг друга, до целого значения , когда спины всех электронов направлены в одну сторону. При нечетном  квантовое число  может принимать все полуцелые значения от  до .

 в) Результирующий момент всего атома  есть результат квантовомеханического сложения моментов  и , которое сводится к правилу сложения квантовых чисел  и . Все возможные значения результирующего механического момента атома определяются формулой   в которой квантовое число  имеет одно из следующих значений    .

 У атомов с четным числом электронов число  целое, а у атомов с нечетным числом электронов - полуцелое.

 Проекция результирующего механического момента атома на выделенное направление  определяется следующей формулой пространственного квантования  Здесь квантовое число  принимает  значений  

      Для обозначения квантовых чисел в многоэлектронном атоме используется условное обозначение "терма" атома в определенном квантовом состоянии в виде     ,     где под  подразумевается одна из букв S=0, P=1, D=2, F=3, G=4   

     Терм содержит в себе сведения о значении трех квантовых чисел  и . Например, для терма  значения этих чисел:  и , а для , соответственно,   и .

      Число  называется мультиплетностью терма. В случае, когда , это число дает количество подуровней, отличающихся значением числа .

      Гиромагнитное отношение для суммарных механического и магнитного моментов многоэлектронного атома отличается как от орбитального (5.39), так и от спинового (5.46). Соответствующий квантовомеханический расчет дает для суммарного магнитного момента атома выражение    

     в котором множитель    зависящий от всех трех квантовых чисел  и , называется фактором Ланде.

46). Зеемана эффект - расщепление уровней энергии и спектральных линий атома и других систем в магнитном поле. Под действием магнитного поля уровни энергии расщепляются на зеемановские подуровни; при переходах между подуровнями уровней Ei и Ek вместо одной спектральной линии появляется несколько поляризованных компонент. Для одиночных спектральных линий в направлении, перпендикулярном направлению напряженности магнитного поля Н, наблюдается зеемановский триплет - несмещенная относительно первичной линии π-компонента, поляризованная в направлении Н, и две симметричные относительно нее σ-компоненты, поляризованные перпендикулярно Н (простой, или нормальный, Зеемана эффект, рис. 1).

Для дублетов и мультиплетов высших порядков наблюдается сложная картина расщепления: появляется несколько равноотстоящих друг от друга π-компонент и две симметричные относительно них группы σ-компонент (аномальный, или сложный Зеемана эффект). Величина расщепления пропорциональна Н  и относительно мала (для Н~20 кЭ она порядка десятых долей ангстрема). В сильных магнитных полях (полях, вызывающих расщепление порядка мультиплетного и выше) вместо сложного Зеемана эффекта наблюдается зеемановский триплет (Пашена-Бака эффект).

Зеемана эффект обусловлен наличием у квантовой системы (например, атома) магнитного момента μ, который связан с механическим моментом М атома и может ориентироваться в пространстве лишь определенным образом. Число возможных ориентаций момента μ равно степени вырождения уровня энергии. Каждой проекции μH магнитного момента μ на направление Н, соответствует дополнительная энергия, ΔE = - μHH, что приводит к снятию вырождения, уровень расщепляется, т.к. μH принимает значение μH = - gμБm (где g - Ланде множитель;μБ- магнетон Бора; m - магнитное квантовое число), то значение ΔE = gμБHm для различных m различны. Расстояние между соседними подуровнями δ = gμБH =gΔE0, где ΔE0 = μБH - величина нормального расщепления. Если для уровней Ei и Ek расщепление одинаково (gi = gk), то наблюдается зеемановский триплет, если gi ≠ gk, - сложный Зеемана эффект.

Исследование картины зеемановского расщепления важно для изучения тонкой структуры атомов и других атомных систем. Наряду с квантовыми переходами между зеемановкими подуровнями, принадлежащими различным уровням энергии (Зеемана эффект на спектральных линях), можно наблюдать магнитные квантовые переходы между подуровнями одного уровня энергии. Такие переходы происходят под действием излучения с частотами ν=δ/h (h - постоянная Планка), лежащими, как правило, в СВЧ диапазоне электромагнитных волн. Это приводит к эффекту избирательного поглощения радиоволн в парамагнитных веществах, помещенных в магнитное поле, - к электронному парамагнитному резонансу. На основе этого эффекта созданы устройства квантовой электроники, в том числе приборы для прецизионного измерения слабых полей (квантовые магнетометры). Зеемана эффект наблюдается в молекулярных спектрах, однако его наблюдение и расшифровка представляют большие трудности вследствие сложной картины расщепления и перекрытия в них спектральных полос. Зеемана эффект можно наблюдать в спектрах кристаллов (обычно в спектрах поглощения).

47). Характеристическое рентгеновское излучение

Когда энергия бомбардирующих анод электронов становится достаточной для вырывания электронов из внутренних оболочек атома, на фоне тормозного излучения появляются резкие линии характеристического излучения. Частоты этих линий зависят от природы вещества анода, поэтому их и назвали характеристическими.

      Состояние атома с вакансией во внутренней оболочке неустойчиво. Электрон одной из внешних оболочек может заполнить эту вакансию, и атом при этом испускает избыток энергии в виде фотона характеристического излучения:  

Все переходы на k-оболочку образуют K-серию, соответственно, на l- и m-оболочки – L- и M-серии (рис. 2.8).

Английский физик Генри Мозли в 1913 году установил закон, названный его именем, связывающий частоты линий рентгеновского спектра с атомным номером испускающего их элемента Z:

Здесь постоянная Ридберга; σ – постоянная, учитывающая экранирующую роль окружающих ядро электронов. Чем дальше электрон от ядра, тем σ больше.

На рис. 2.9 показана графическая зависимость закона.

      Закон Мозли позволил по измерению длин волн λ рентгеновских лучей точно установить атомный номер элемента. Он сыграл большую роль при размещение элементов в таблице Менделеева.

48). Поглощение, спонтанное и вынужденное излучения

Как отмечалось нами, атомы могут находиться лишь в квантовых состояниях с дискрет­ными значениями энергии Е1, Е2, Е3, ... Ради простоты рассмотрим только два из этих состояний (1 и 2) с энергиями Е1 и Е2. Если атом находится в основном состоянии 1, то под действием внешнего излучения может осуществиться вынужденный переход в воз­бужденное состояние 2 (рис. 309, а), приводящий к поглощению излучения. Вероятность подобных переходов пропорциональна плотности излучения, вызывающего эти переходы.

Атом, находясь в возбужденном состоянии 2, может через некоторый промежуток времени спонтанно, без каких-либо внешних воздействий, перейти в состояние с низшей энергией (в нашем случае в основное), отдавая избыточную энергию в виде электромагнитного излучения (испуская фотон с энергией h=E2–Е1). Процесс испускания фотона возбужденным атомом (возбужденной микросистемой) без каких-либо внешних воз­действий называется спонтанным (или самопроизвольнымизлучением (рис. 309, б). Чем больше вероятность спонтанных переходов, тем меньше среднее время жизни атома в возбужденном состоянии. Так как спонтанные переходы взаимно не связаны, то спонтанное излучение некогерентно.

А. Эйнштейн для объяснения наблюдавшегося на опыте термодинамичес­кого равновесия между веществом и испускаемым и поглощаемым им излучением постулировал, что помимо поглощения и спонтанного излучения должен существовать третий, качественно иной тип взаимодействия. Если на атом, находящийся в возбуж­денном состоянии 2, действует внешнее излучение с частотой, удовлетворяющей усло­вию hv=E2E1, то возникает вынужденный (индуцированный) переход в основное состояние 1 с излучением фотона той же энергии hv=E2E1 (рис. 309, в). При подобном переходе происходит излучение атомом фотона, дополнительно к тому фотону, под действием которого произошел переход. Возникающее в результате таких переходов излучение называется вынужденным (индуцированным) излучением. Таким образом, в процесс вынужденного излучения вовлечены два фотона: первичный фотон, вызыва­ющий испускание излучения возбужденным атомом, и вторичный фотон, испущенный атомом. Существенно, что вторичные фотоны неотличимы от первичных, являясь точной их копией.

49). Вынужденное излучение. Оптические квантовые генераторы и их применение.

Остановимся теперь на вынужденном излучении, наличие которого было впервые постулировано А. Эйнштейном для объяснения спектров излучения абсолютно чёрного тела.

Если атом находится в возбужденном состоянии, то существует вероятность вынужденного испускания света под действием поля проходящей электромагнитной волны. С квантовых позиций фотон с энергией hνB12 B EB2 B EB1B стимулирует квантовые переходы в атоме с верхнего уровня EB2B на нижний EB1B, в результате возникает еще один фотон с энергией hν. Принципиально важным является то, что вынужденное излучение имеет точно такие же характеристики, что и первичное: ту же частоту, направление распространения и поляризацию. Иными словами, первичный и вторичный фотоны неразличимы.

Таким образом, новые фотоны, индуцированные падающим светом, усиливают свет, проходящий через коллектив излучающих атомов (или центров излучения в твердом теле). Препятствуют этому процессу центры, находящиеся в основном состоянии и имеющие определенную вероятность поглощения света. В случае преобладания актов вынужденного излучения среда становится усиливающей (говорят об отрицательном поглощении света), что определяется формулой В.А.Фабриканта: Ф  ФB0B, где ()  отрицательный показатель поглощения, а сам закон сопоставим с законом Бугера-Ламберта

Лазеры или оптические квантовые генераторы – это современные источники когерентного излучения, обладающие целым рядом уникальных свойств. Создание лазеров явилось одним из самых замечательных достижений физики второй половины XX века, которое привело к революционным изменениям во многих областях науки и техники. К настоящему времени создано большое количество лазеров с различными характеристиками – газовых, твердотельных, полупроводниковых, излучающих свет в различных оптических диапазонах. Лазеры могут работать в импульсном и непрерывном режимах. Мощность излучения лазеров может изменяться в пределах от долей милливатта до 1012–1013 Вт (в импульсном режиме). Лазеры находят широкое применение в военной технике, в технологии обработки материалов, в медицине, оптических системах навигации, связи и локации, в прецизионных интерференционных экспериментах, в химии, просто в быту и т. д. Современную жизнь уже невозможно представить без лазеров.

Использование:

Технологические лазеры. Мощные лазеры непрерывного действия применяются для резки, сварки и пайки деталей из различных материалов. Высокая температура излучения позволяет сваривать материалы, которые иными методами соединить нельзя (например, металл с керамикой).

Лазерная связь. Существует простая закономерность: чем выше несущая частота (меньше длина волны) канала связи, тем больше его пропускная способность. Лазерная связь осуществляется по оптическому волокну – тонким стеклянным нитям, свет в которых за счет полного внутреннего отражения распространяется практически без потерь на многие сотни километров.

Лазеры в медицине. Лазерная техника широко применяется и в хирургии, и в терапии. Лазерным лучом, введенным через глазной зрачок, «приваривают» отслоившуюся сетчатку и исправляют дефекты глазного дна. Хирургические операции, производимые «лазерным скальпелем» меньше травмируют живые ткани.

Лазеры в научных исследованиях. Чрезвычайно высокая температура излучения и высокая плотность его энергии дает возможность исследовать вещество в экстремальном состоянии, существующем только в недрах горячих звезд.

Военные лазеры. Военное применение лазеров включает как их использование для обнаружения целей и связи, так и применение в качестве оружия.

50). Газовый лазер, лазер с газообразной активной средой. Трубка с активным газом помещается в оптический резонатор, состоящий в простейшем случае из двух параллельных зеркал. Одно из них является полупрозрачным.   Испущенная в каком-либо месте трубки световая волна при распространении её через газ усиливается за счёт актов вынужденного испускания, порождающих лавину фотонов. Дойдя до полупрозрачного зеркала, волна частично проходит через него. Эта часть световой энергии излучается Газовый лазер вовне. Другая же часть отражается от зеркала и даёт начало новой лавине фотонов. Все фотоны идентичны по частоте, фазе и направлению распространения. Благодаря этому излучение лазера может обладать чрезвычайно большой монохроматичностью, мощностью и резкой направленностью.   Первый Газовый лазер был создан в США А. Джаваном. Существующие Газовый лазер работают в очень широком диапазоне длин волн — от ультрафиолетового излучения до далёкого инфракрасного излучения — как в импульсном, так и в непрерывном режиме. В табл. приведены некоторые данные о наиболее распространённых Газовый лазер непрерывного действия.   В излучении Газовый лазер наиболее отчётливо проявляются характерные свойства лазерного излучения — высокая направленность и монохроматичность. Существенным достоинством является их способность работать в непрерывном режиме. Применение новых методов возбуждения (см. ниже) и переход к более высоким давлениям газа могут резко увеличить мощностьГазовый лазер С помощью Газовый лазер возможно дальнейшее освоение далёкого инфракрасного диапазона, диапазонов ультрафиолетового и рентгеновского излучений. Открываются новые области применения Газовый лазер, например в космических исследованиях. Частота w излучения Газовый лазер воспроизводится с точностью до 10-11, а относительная стабильность частоты   

Свойства лазерного излучения: 1) Когерентность. В физике существует 2 типа когерентности - пространственная и временная. Пространственная когерентность выражается в однотипности волнового фронта, т. е. пики и спады волн располагаются параллельно, когда свет выходит из лазера. Это обеспечивает синхронизацию фаз и фокусировку на очень маленькие участки.  2) Монохромность (временная когерентность). Это означает, что световые волны имеют одинаковую длину. Некоторые лазеры испускают лучи разной длины волны. Но явление это предсказуемо, и лазеры излучают свет только той длины, которая предусмотрена используемой в лазере средой.  3) Коллимация. Это означает, что все лучи, испускаемые лазером, параллельны и не рассеиваются с расстоянием. 

4). Лазерное излучение большой мощности имеет огромную температуру.

Поскольку лазерное излучение практически монохроматично, а плотность энергии (ее количество в единице объема) может быть чрезвычайно велика, температура излучения способна достигать огромной величины.

Соседние файлы в предмете Физика