Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
125
Добавлен:
17.04.2015
Размер:
599.55 Кб
Скачать

16.2. Построение линий влияния опорных моментов кинематическим методом

Для построения линии влияния какого-либо усилиякинематическим методом необходимо в сооружении нарушить ту связь, которая передает это усилие, и заменить нарушенную связь усилием.В полученной основной системе перемещение по направле­нию нарушенной связи от действия подвижной одиночной силы и усилия должно равняться нулю:

, (16.7)

Откуда .

Учитывая, что на основании теоремы о взаимности перемеще­ний , окончательно получим:

, (16.8)

где -перемещение по направлению подвижной единичной нагрузки от усилияS= 1.

Рис.11.3

Например, если необходимо определить линию влияния опорного момента в n-ом опорном сечении многопролетной балки, расчетная схема заданной и основной системы принимает вид, показанный на рис.16.3.

Если подвижная единичная сила занимает произвольное положение, то представляет собой эпюру перемещений (упругую линию) основной системы от усилия= 1.

Перемещение от усилия= 1 по направлению этого же усилия является величиной постоянной и называется масштабом эпюры перемещений.

Изобразив примерный вид упругой линии основной системы от усилия , получим очертание линии влияния усилия, так на­зываемую модель линии влияния. Таким образом, кинематический метод дает возможность быстро получить внешний вид (модель) любой линии влияния.

Для построения линии влияния усилия необходимо вычислить ординаты упругой линии основной системы от усилия и поделить их на постоянную величину (-).

Рассмотрим примеры построения линий влияния усилий в неразрезной балке кинематическим методом. Применим кинематический метод к построению линии влияния опорного момента М2неразрезной балки (рис.16.4,а).

Для получения основной системы в сечение балки над опорой 2 введем шарнир и заменим нарушенную связь парными мо­ментами М2= 1 (рис.16.4,в). Уравнение совместности деформаций имеет вид, из которого следует, что

. (16.9)

В основной системе каждый пролет можно представить как балку на двух шарнирных опорах, нагруженную одним или двумя опорными моментами. 

Уравнения прогибов и углов поворота для балки на двух опорах с одним опорным моментом М= 1 (см. рис.16.5) можно легко рассчитать методом начальных параметров. Вводя обозначение, получим:

(16.10)

Для облегчения подсчета ординат эпюры прогибов МP2 на рис.16.5 показана упругая линия балки на двух шарнирных опорах, нагруженной одним опорным моментом М= 1, и указаны углы поворота на опорах и прогибы через 0,2l. 

Как видно из рис.16.4, б, (n= 2) перемещениепредставляет собой взаимный угол поворота двух смежных сечений основной системы на опореn= 2. Этот угол можно подсчитать также, ис­пользуя упругую линию балки на двух опорах, показанную на рис.16.5.

Запишем систему уравнений трех моментов (исключая для опоры 2) для определения изгибающих моментов на опорах от действия М2= 1:

(16.11)

Учитывая, что М0 = М5 = 0, а также, что M2= 1, получаем:

Рис.16.4

Рис.16.5

Решив эту систему, получим М1=-20/70 =-0,286кН×м. Подставим значение М1во второе и третье урав­нения и умножим последнее на-5 и сложим со вторым, получим последовательно:

3 -33×М4= 0 , т.е. М4 =3/33 = 0,091 кН×м и 2М3=-7/11, или М3 =-7/22 =-0,318 кН×м.

По данным рис.16.3 подсчитаем взаимный угол поворота смежных сечений основной системы на опоре 2:

Используя рис.16.5, вычислим для каждого пролета ординаты эпюры моментов (упругой линии) основной системы . Расчеты будем вести в табличной форме (см. табл.16.1, где следует учесть, что ординаты линии влияния умножены наEJ).

Поясним методику заполнения таблицы.

Основная система расчленяется на балки на двух опорах при действии двух опорных моментов МлевиМправ.. По принципу независимости деформаций Бетти, прогибы балки подсчитываются независимо, как сумма прогибов от действия одного опорного момента (см. рис.16.5 или формулы 16.3):

,

где .

Таким образом, заполняются столбцы 3, 4 и 5 таблицы 16.1. В столбце 6 записываются ординаты линии влияния М2, подсчитан­ные по формуле (16.10). На рис.16.5,дприведена линия влиянияМ2.

Для построения линий влияния изгибающих моментов и поперечных сил в сечении неразрезной балки используются зависимости:

; (16.12)

(16.13)

где и-ординаты эпюрМk и Qkот внешней нагрузки в се­чении к балки пролетомlnна двух шарнирных опорах;MnиMn-1-линии влияния опорных моментов неразрезной балки.

Таблица 16.1

Часть балки

Сечение

Момент на опоре приложен слева, Mлев.

Момент на опоре приложен справа, Mправ.

Момент на опоре приложен и слева и справа

Ординаты линии влияния, М2

Пролет 0-1

0

0,2

0,4

0,6

0,8

1,0

0

0

0

0

0

0

0

-2,0592

-3,6063

-4,1184

-3,0888

0

0

-2,0592

-3,6063

-4,1184

-3,0888

0

0

0,1458

0,2551

0,2916

0,2187

0

Пролет 1-2

0

0,2

0,4

0,6

0,8

1,0

0

-5,4912

-7,3216

-6,4046

-3,6608

0

0

12,800

22,400

25,600

19,200

0

0

7,3083

15,078

19,194

15,539

0

0

-0,1575

-1,0676

-1,3590

-1,1003

0

Пролет 2-3

0

0,2

0,4

0,6

0,8

1,0

0

43,200

57,600

50,400

28,800

0

0

-9,158

-16,027

-18,317

-13,738

0

0

34,042

41,573

32,083

15,062

0

0

-2,4104

-2,9436

-2,2717

-1,0665

0

Пролет 3-4

0

0,2

0,4

0,6

0,8

1,0

0

-6,1056

-8,1408

7,1232

4,0704

0

0

1,1648

2,0384

2,3296

1,7472

0

0

-4,9408

-6,1024

-4,7936

-2,3232

0

0

0,3498

0,4321

0,3394

0,1645

0

Пролет 4-5

0

0,2

0,4

0,6

0,8

1,0

0

0,9828

1,3104

1,1466

0,6552

0

0

0

0

0

0

0

0

0,9828

1,3104

1,1466

0,6552

0

0

-0,0696

-0,0928

-0,0812

-0,0464

0

Ординаты линии влияния опорной реакции Rnподсчитываются по формуле:

, (16.14)

где -линия влияния реакции шарнирной балкиn, если эту эпюру рассматривать как общую для двух простых балок пролетомlnи ln+1.

На рис.16.3, е,жприведены линии влияния опорных реакцийидля неразрезной балки, приведенной на рис.16.3,а.

Соседние файлы в папке Лекции