Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

МАТЕМАТИКА для экономистов / Арнольд В.И. Что такое математика. 2002

.pdf
Скачиваний:
137
Добавлен:
20.04.2015
Размер:
509.4 Кб
Скачать

Через несколько недель я получил от министра образования России план разработанных Министерством новых программ для школ по всем предметам. В соответствии с мнением Аносова (избранного по моей же более ранней инициативе представителем Отделения математики Российской академии наук при Министерстве образования), курс геометрии был полностью исключен из всех учебных планов.

Некоторое время я боролся против этого мракобесного решения; соответствующие письма против исключения геометрии отправили Министерству Ученый совет Математического института имени В. А. Стеклова Российской академии наук — с одной стороны и представители ряда оборонных предприятий (сообщившие мне об этом годом позже в Дубне) — с другой. Через несколько месяцев министр прислал мне (с благодарностью) переработанную версию учебных планов, где геометрия вернулась на свое старинное место2.

Правда, перерабатываются программы требований к школьникам на уроках и особенно на экзаменах (которые, впрочем, предполагается заменить тестами).

Нелепость тестовых испытаний хорошо показывает опыт США, где десятилетиями роль проверки геометрических знаний давалась задаче: «Найти площадь прямоугольного треугольника с гипотенузой 10 дюймов и опущенной на нее высотой длиной в 6 дюймов».

Окончившие российские школы испытуемые не могли дать искомое «решение» (S = ah/2 = 30 кв. дюймов), так как понимали, что таких треугольников нет: вершина прямого угла лежит на окружности, диаметр которой — гипотенуза. Поэтому высота не может быть длиннее пяти дюймов.

Но это не останавливает любителей тестов: они «доказали» слабое умственное развитие московских школьников их неспособностью ответить на тестовый вопрос: «Что общего у ежа с молоком?» (я тоже не решил, и испытующие сообщили мне ответ: «они оба свертываются»).

Да минет наших школьников чаша сия! Пусть они по-прежнему решают настоящие интересные задачи, как они и любят!

Вопрос о том, какие математические задачи заслуживают того, чтобы их пытаться решить, и зачем они ставятся и решаются, весьма непрост3: проблемы Ферма и Гильберта, Римана и Пуанкаре имеют длинную и поучительную историю. Я приведу ниже несколько примеров, показывающих,

2Современный управитель суперкомпьютерной фирмы пишет: «Геометрию пора перенести

вкурс истории, так как все ее задачи либо решены, либо решаются иными методами.» (J. Bailey. After Thought. Basic Books, 1996). Попытки обучить подобных людей мышлению, логике и уважению к науке и культуре безнадежны.

3Поучительные примеры задач, которыми не следует заниматься, привел М. Планк в специально посвященной ненужным задачам лекции 1946 г. в Гёттингене. Простейший его

11

вчастности, сколь многое неверно в распространяемых по этому вопросу мнениях. Известный «эпонимический принцип» состоит в том, что если какой-либо объект (например, Америка) носит чье-то имя, то это — не имя первооткрывателя.

Заведовавший Отделением математики Российской академии наук (АН СССР) Николай Николаевич Боголюбов всегда убеждал меня, чтобы я печатал свои статьи не в математических, а в физических журналах4. По его словам, число читателей хорошей статьи будет таким же — скажем, тысяча. «Разница,— продолжал он,— состоит в том, что при

публикации статьи в математическом журнале эта тысяча читателей образуется за сотню лет, по десять читателей в год, и это — вечная слава. При публикации же в физическом журнале вся тысяча читателей прочтет статью в первые же недели, и автора немедленно выберут в академики, а через сто дней никто уже не будет помнить имя автора, хотя и результаты, и методы статьи будут всеми постоянно использоваться, как общеизвестные

(и, разумеется, без ссылки на автора и с последующим присуждением нобелевской премии за это достижение другим)».

Впрочем, Н. Н. Боголюбов показал мне на замечательном примере преимущества своей прагматической точки зрения. В то время я хотел издать

врусском переводе избранные сочинения А. Пуанкаре, а издательство

отказывалось (ссылаясь на критику Пуанкаре, опубликованную в 1909 г. в «Материализме и эмпириокритицизме»). Когда я стал просить развивавшего идеи Пуанкаре Н. Н. помочь, он сказал: «Нужно использовать то, что Пуанкаре, как и мы с Вами оба, был не только математиком, но также и физиком, даже естествоиспытателем. А естествоиспытатель должен видеть

вкаждом явлении природы, даже неприятном, вроде извержения вулкана, возможность использовать это явление в научных целях, например — узнать что-либо о внутреннем строении Земли.

Внашем случае речь идет о другом неприятном явлении природы, кото-

рое нам и нужно использовать: это антисемитизм и антиэйнштейнианство отдельных лиц». Сказав это, он написал в издательство письмо, объясняющее (совершенно справедливо), сколь велики заслуги Пуанкаре в

создании теории относительности. Он опубликовал принцип относительности в своей статье «Об измерении времени» лет за десять до Эйнштейна,

пример — дискуссия о том, какая стена в аудитории правая? Расхождение стоящего у доски лектора и его слушателей по этому вопросу непримиримо, так как они обращены друг к другу лицами.

Мне случалось, впрочем, наблюдать, как физики успешно справляются с подобными логическими противоречиями. Например, иногда помогает их прагматическая система измерений, в которой c, h и 4ı все равны единице.

4Среди моих читателей все равно больше физиков, механиков, астрономов и т. п.

12

который лишь в сороковых годах указал, что он, по советам своего учителя Минковского, разобрал эти работы Пуанкаре до начала своих.

И трехтомное «Избранное» Пуанкаре издали по-русски, включая статью об измерении времени, но без критики Эйнштейна.

§2. Математическое мракобесие против Абеля и против Пуанкаре

Я надеюсь больше рассказать об Абеле и Пуанкаре, чем о мракобесах. Вопрос о том, какие математические вопросы заслуживают внимания, а какие нет, очень непрост. Один великий современный математик сформу-

лировал свой ответ так: «Узнать, хороша ли задача, можно только одним способом: надо ее решить».

На Европейском III математическом конгрессе (в Барселоне, в 2001 г.) было объявлено о другом решении проблемы объяснения сущности математической деятельности нематематикам. Один крупный современный деятель сказал, что когда он был студентом математического факультета, то ответил студентам других специальностей в баре, где они вместе пили: «Вот, под этой курткой на мне рубашка. Математика позволяет мне вывернуть рубашку наизнанку, не снимая куртки!» Он утверждает, что, проделав это топологическое упражнение, он навсегда дал своим коллегам «ясное представление о математике». Я же могу добавить, что именно такие представления о деятельности математиков приводят правительства и общество к прекращению финансирования этой науки и грозят ей полным уничтожением.

Величайший французский математик А. Пуанкаре писал, что в математике немало «да—нет» вопросов, вроде проблемы Ферма: есть ли целочисленные положительные решения у уравнения xn + yn = zn, где n больше двух?

По словам Пуанкаре, именно эти «бинарные» проблемы гибельны для математики: по-настоящему интересные проблемы не допускают ни столь точной формулировки, ни однозначного «да—нет» ответа. Интересно, например, узнать, как и что можно изменить в условиях задачи (скажем, в граничных условиях для дифференциального уравнения), не нарушая его (однозначной) разрешимости. Много таких допустимых изменений или мало? Именно при исследовании такого рода вопросов, а не «да—нет» задач, возникают, по мнению Пуанкаре, новые математические теории, а следовательно — и фундаментальные открытия, и замечательные приложения (как в самой математике, так и вне ее, например в медицине томографии или в небесной механике космических полетов).

13

Сам Пуанкаре построил, исходя из этого, такие новые науки, как топологию и теорию динамических систем, теорию бифуркаций и теорию автоморфных функций, принцип относительности и вариационное исчисление в целом5. Как основные задачи математики будущего XX в. он назвал тогда построение математического аппарата теории относительности и квантовой физики. Опыт последовавшего столетия показал, что его открытия и предсказания сыграли в развитии математики неизмеримо большую´ роль, чем составленный Гильбертом (по тому же случаю конца XIX в.) список из пары десятков «да—нет» задач. В «проблемах Гильберта» практически отсутствовала, например, именно наиболее развивавшаяся в XX в. область математики — топология, затронутая лишь отчасти в гильбертовых проблемах 13 (о суперпозициях) и 16 (о вещественных алгебраических кривых и

определьных циклах).

Кконцу XX в. Международный математический союз выпустил книгу «Математика, ее границы и перспективы» (под редакцией В. Арнольда, М. Атьи, П. Лакса и Б. Мазура). В этой книге содиректор Боннского математического института Ю. И. Манин дал свои новые определения математики, математического образования и новую оценку стоящих перед

математикой задач. О них я теперь и расскажу.

Математика, согласно Манину, — это отрасль лингвистики или филологии, занимающаяся преобразованием конечных цепочек сим-

волов некоторого конечного алфавита в другие такие цепочки при помощи конечного числа «грамматических» правил. Отличие от естественных языков, вроде китайского, английского или русского, состоит

лишь в том, что в грамматике этого специального языка есть отсутствующие в живых языках правила (например, набор символов «1 + 2» можно заменить на символ «3»).

Гильберт, долго придерживавшийся аналогичного формального определения, оставил его, после того как Гёдель опроверг его оптимистическое предположение возможности полной формализации всей математической науки. Гёдель доказал наличие в каждой достаточно богатой формальной теории таких утверждений, которые нельзя ни доказать, ни опровергнуть в рамках этой теории. Сейчас доказано, что к этому классу принадлежит, например, гипотеза Кантора об отсутствии промежуточной мощности между мощностями множеств всех целых и всех вещественных чисел.

Доказательства невозможности являются замечательной и глубоко неочевидной частью математики, и я приведу здесь такое доказательство для другого случая: докажу невозможность построения центра

5В словаре Ларусса (1926 г.) А. Пуанкаре определялся как «автор понятия функция Фукса»: школа Пуанкаре существует скорее в России, чем во Франции.

14

заданной на плоскости окружности при помощи одной лишь линейки

(циркулем и линейкой построить центр можно).

Это доказательство начинается с рассмотрения «косого» конуса, опирающегося на заданную окружность: прямая, соединяющая вершину конуса с центром окружности, должна не быть перпендикулярной плоскости окружности. В этом его «косина».

Косой конус не является вращательно симметричным, и его сечение плоскостью, перпендикулярной его (естественно определяемой) оси, эллиптично — я не собираюсь ни использовать эту эллиптичность, ни ее доказывать, ни даже точно определять «ось».

Важным свойством косого конуса является то, что окружности получаются при его пересечении некоторыми двумя непараллельными плоскостями (одинаково наклоненными к оси, но в противоположные стороны). Существование таких непараллельных друг другу круговых сечений доказать легко (хотя бы из соображений непрерывности отношений длин осей получающегося в сечении эллипса в зависимости от наклона секущей плоскости).

Предположим теперь, что какие-либо построения прямых на исходной плоскости всегда доставляют центр исходной окружности. Спроектируем всю эту конструкцию на плоскость непараллельного исходному кругового сечения лучами, исходящими из вершины конуса. Тогда на этой плоскости непараллельного сечения будут выполнены те же самые построения линейкой, что и на исходной плоскости. И если бы эти построения всегда приводили к центру, то оказалось бы, что центр исходной окружности и центр непараллельного ей кругового сечения проектируются друг в друга лучом из вершины конуса, т. е. лежат с этой вершиной на одной прямой.

Но эти два центра на одной прямой с вершиной конуса не лежат (что легко проверить даже просто экспериментально).

Значит, построения, всегда приводящего к центру окружности, не существует.

Другой классический пример древней неразрешимой задачи — теорема Абеля о несуществовании формулы, состоящей из радикалов и из рациональных функций, доставляющей решение общего алгебраического уравнения пятой (или более высокой) степени, например уравнения

(1)

x5 + ax4 + bx3 + cx2 + dx + e = 0.

Доказательство этой теоремы Абеля — топологическое. Его проще объяснить для случая уравнения покороче,

(2)

x5 + ax + 1 = 0,

которое уже тоже неразрешимо в радикалах в указанном выше смысле.

15

Комплексное решение x этого уравнения является (пятизначной) комплексной алгебраической функцией от значения комплексного коэффициента a. Когда коэффициент a непрерывно меняется, пять комплексных корней уравнения тоже непрерывно меняются. Если менять коэффициент так, чтобы у уравнения (2) ни в какой момент не было кратного корня, то можно непрерывно следить за каждым отдельным корнем. И если в некоторый момент значение коэффициента a вернется к своему исходному значению, то и двигавшиеся непрерывно корни все вместе в конце будут теми же, что и в начале, однако каждый отдельный корень может при этом вернуться не на свое исходное место, а на место другого корня, как это происходит, например, с корнями квадратного уравнения x2 + a = 0, когда комплексный коэффициент a обходит вокруг начала координат.

В результате движения параметра a возникает перестановка пяти корней исходного уравнения (для квадратного уравнения это была бы просто перестановка, переводящая корень x1 в корень x2, а x2 — в x1).

Всевозможным (не приводящим по дороге к кратным корням) путям движения коэффициента a от начального положения обратно к нему же отвечает некоторый набор перестановок корней начального уравнения. Этот набор образует группу: если две перестановки реализуются движениями коэффициента a, то можно реализовать и их произведение, состоящее в последовательном применении сначала одной, а потом другой перестановки. Для этого коэффициенту a нужно пройти сначала первый замкнутый путь, а потом второй. При прохождении пути в обратную сторону будет реализована перестановка корней, обратная той, которую реализовывал исходный путь (произведение прямой и обратной перестановок возвращает каждый корень на свое исходное место).

Итак, все реализуемые путями в плоскости коэффициента a перестановки корней x образуют группу. Эта группа перестановок корней исходного уравнения называется его группой монодромии («однозначности вдоль путей»).

Чтобы понять все это, полезно найти группу монодромии приведенного выше уравнения (2). Оказывается, эта группа состоит из всех 120

перестановок пяти корней исходного уравнения.

Группа всех n! перестановок n предметов называется n-й симметрической группой и обозначается через Sn. Например, группу S3 можно считать группой из шести симметрий правильного треугольника, вершины которого она переставляет, а группу S4 — группой из 24 симметрий правильного тетраэдра (в ней 12 вращений и 12 отражений), переставляет же она четыре вершины тетраэдра.

Вращения образуют подгруппу R в этой группе симметрий: произведение двух вращений является вращением. Группа R не коммутативна.

16

В группе вращений тетраэдра есть еще замечательная подгруппа G из 4 элементов. Она состоит из трех вращений на 180вокруг осей, соединяющих середины противоположных ребер, и из тождественного преобразования. Группа G коммутативна.

Группа вращений тетраэдра действует на тройке прямых, соединяющих середины противоположных ребер. Указанная выше подгруппа состоит в точности из всех тех вращений, которые переводят каждую из описанных трех прямых в себя. Таким образом, мы получаем цепочку из трех групп

G → R → S4.

В группе симметрий тетраэдра S4 есть еще и другие подгруппы — например, группа 6 симметрий, оставляющих на месте одну из вершин, или из двух симметрий, переводящих в себя одно из ребер.

Эти подгруппы, однако, зависят от «случайного» выбора (вершины или ребра), они меняются местами при перенумерации вершин (как говорят в математике, «при изменении системы координат»). Напротив, группы G и R не зависят ни от какого произвола в выборе системы отсчета (т. е. от нумерации вершин): они инвариантны относительно такого изменения нумерации вершин (которое, например, превратило бы перестановку 1 2 3 1 в перестановку 2 4 1 2, если бы мы придали вершинам (1, 2, 3, 4) номера (2, 4, 1, 3)).

Инвариантные подгруппы называют также нормальными делителями. Всякий раз, когда подгруппа B группы A является нормальным делителем, можно «разделить A на B» и образовать новую группу C, называемую факторгруппой (и обозначаемую C = A/B). Элементами группы C являются «классы смежности» aB элементов группы A по подгруппе B.

Класс смежности aB элемента a — это множество (не подгруппа!) всех произведений вида ab, где b — любой элемент подгруппы B. Этот класс — подмножество группы A.

Умножение в C определяется как умножение представителей: (a1B) × ×(a2B) = a1a2 B. Класс a1a2 B не зависит от от выбора представителей a1 и a2 классов a1B и a2B, а только от самих классов, если подгруппа B — нормальный делитель. Факторгруппа Z/nZ группы целых чисел по подгруппе чисел, делящихся на n, называется группой вычетов по модулю n и состоит из n элементов.

Полезно иметь в виду построенную выше цепочку («из трех групп и двух отображений»)

1 → B → A → C → 1.

Стоящая дополнительно слева единица означает, по определению, что отображение B → A — вложение подгруппы (т. е. что образы разных элемен-

17

тов всегда разные). Стоящая дополнительно справа единица означает, по определению, что образ отображения A → C покрывает группу C целиком. Каждая стрелка по определению переводит произведение любых двух отображаемых объектов в произведение их образов (такие отображения называются гомоморфизмами).

Каждая соседняя пара стрелок в нашей строке из четырех стрелок обладает тем свойством, называемым точностью, что выходящий из средней группы гомоморфизм переводит в 1 в точности весь образ приводящего в среднюю группу слева гомоморфизма.

Цепочка (в ней может быть и больше групп и гомоморфизмов) называется точной последовательностью, если в каждой средней группе выполнено указанное и подчеркнутое выше свойство точности.

Факторгруппы по нашим специальным нормальным делителям легко вычислить. Эти группы

S4/R, R/G, G/{1}

состоят из двух, трех и четырех элементов соответственно, и каждая из них коммутативна.

Чтобы все это понять, полезно рассмотреть еще группу B всех симметрий куба. В ней 48 элементов. У куба четыре большие диагонали. Симметрии куба переставляют их. Мы получаем гомоморфизм

B → S4,

сопоставляющий симметрии куба перестановку диагоналей. Образом является вся группа 24 перестановок диагоналей.

В тождественную перестановку 1 отображаются две симметрии куба: тождественная и антиподальная (симметрия относительно центра). В частности, подгруппа из 24 вращений куба отображается на группу S4 перестановок диагоналей изоморфно.

Теперь нужно посмотреть, какие из подгрупп группы всех симметрий куба являются в ней нормальными делителями.

Основное для теории разрешимости уравнений в радикалах понятие теории групп — это понятие разрешимой группы. Разрешимость — это «составленность из коммутативных составляющих». Группа G называется разрешимой, если для нее существует такая цепочка нормальных делителей

1 → G1 → G2 . . . (Gn = G)

(Gk — нормальный делитель в Gk+1), что все факторгруппы Gk+1/Gk коммутативны.

18

Выше мы показали, что группа S4 симметрий тетраэдра разрешима. Еще легче проверить разрешимость группы S3 симметрий правильного

треугольника.

Ненамного сложнее доказать разрешимость группы B симметрий куба. Но самым замечательным является тот факт, что группа S5 всех 120

перестановок пяти элементов уже неразрешима. Эта неразрешимость следует из того, что единственный имеющийся в группе S5 нетривиальный нормальный делитель — это группа из 60 четных перестановок. А она уже не имеет нетривиальных нормальных делителей (тривиальные — это 1 и сама группа).

Доказательства этих свойств группы перестановок из пяти элементов можно извлечь из свойств додекаэдра — правильного многогранника, имеющего 12 (отсюда «додека», греческое «двенадцать») пятиугольных граней, сходящихся по 3 в 20 вершинах и пересекающихся по 30 ребрам.

В додекаэдр можно вписать пять кубов, вершинами каждого из которых является часть вершин додекаэдра. С этой целью начнем с одной из пяти диагоналей грани. На двух соседних гранях, сходящихся в конце этой диагонали, тоже выберем по проходящей через эту вершину диагонали грани (так, чтобы три сходящиеся в этой вершине додекаэдра выбранные диагонали граней переводились друг в друга сохраняющим эту вершину вращением додекаэдра). Продолжая этот процесс выбора диагоналей в вершинах уже построенных диагоналей граней, мы будем получать все новые диагонали граней и вершины, пока не построим все 8 вершин искомого куба и все 12 его ребер (являющихся диагоналями двенадцати граней додекаэдра).

На каждой грани додекаэдра мы получим таким путем одну диагональ. Если бы мы начали с другой из пяти диагоналей исходной грани, то построили бы другой из пяти вписанных в додекаэдр кубов.

Описанная здесь конструкция была использована Кеплером при анализе планетных орбит и поиске закона распределения расстояний планет от Солнца в геометрии правильных многогранников, вписанных друг в друга. Он называл это «гармонией мира».

Проделав такую же конструкцию с диагоналями граней для исходного куба вместо додекаэдра, мы получили бы два тетраэдра, вписанных в куб (вместо пяти кубов, вписанных в додекаэдр). Это построение тетраэдров позволяет легко доказать разрешимость групп симметрий и вращений куба, а с ними — разрешимость в радикалах уравнений четвертой степени.

Для додекаэдра и группы S5 анализ подгрупп и нормальных делителей немного сложнее, но тоже в принципе прост: перемножая симметрии, легко проверить, что подгруппа обязательно совпадает со всей группой S5, если она содержит хотя бы одну симметрию, переставляющую пять кубов нечет-

19

ным образом, и удовлетворяет принципу относительности («независимости подгруппы от выбора координат»), определяющему нормальные делители.

Дело в том, что принцип относительности доставляет вместе с данной (нечетной) симметрией так много других (получающихся из нее какой-либо еще симметрией, действующей как перевыбор системы координат), что из их произведений составляется уже вся группа S5.

Из неразрешимости группы S5 перестановок пяти элементов следует и неразрешимость групп перестановок большего´ числа элементов S6, S7, ...

Возвращаясь к теореме Абеля, я скажу только, что группа монодромии корня степени m (x = a1/m) — коммутативная группа (группа вычетов по модулю m). А группа монодромии комбинации нескольких коренных функций составляется из монодромий составляющих ее радикалов

(коренных функций) так, что группа монодромии комбинации оказывается разрешимой.

Поэтому общее уравнение степени 5 или выше неразрешимо: ведь его группа монодромии неразрешима (что следует, как это объяснено выше, из анализа симметрий додекаэдра и их действий на 5 вписанных в додекаэдр кубов).

Таким образом, доказательство теоремы Абеля соединяет все части математики: геометрию (додекаэдр), алгебру (разрешимые группы), топологию (монодромия) и даже (хотя об этом я выше не говорил) теорию чисел (алгебраических). Анализ тоже появляется здесь — в виде теории римановых поверхностей, и я скажу сейчас об этом несколько слов.

Абелевым интегралом называется интеграл от рациональной функции от двух переменных, связанных между собой алгебраическим уравнением:

I =

 

R(x, y) dx,

H(x,y)=0

 

где R — рациональная функция, а H — многочлен (определяющий ту алгебраическую кривую {H = 0}, вдоль которой ведется интегрирование).

Это — прямое обобщение классических «табличных интегралов» Ньютона, включающих в себя квадратные корни, или интегралов от рациональных комбинаций тригонометрических функций, или эллиптических интегралов, выражающих длину эллипса или его дуги, включающих квадратные корни из многочленов степени 4, и т. д.

В этом случае радикалов для выражения интегралов явно недостаточно (появляются, как все знают, еще и логарифмы, арксинусы, арктангенсы и т. д.). Аналогом разрешимости в радикалах является в этом случае возможность интегрирования в классе элементарных функций, т. е. возможность представления интеграла в виде конечной комбинации ради-

20