Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Глава 3 Структурный анализ и синтез механизмов

.pdf
Скачиваний:
33
Добавлен:
02.05.2015
Размер:
262.47 Кб
Скачать

12

3. СТРУКТУРНЫЙ АНАЛИЗ И СИНТЕЗ МЕХАНИЗМА

Цель структурного анализа состоит в изучении строения механизма, определении его степени подвижности и класса.

3.1. Кинематические пары и их классификация

Рассмотрим основные виды и условные обозначения кинематических пар (рис. 3.1) /11/.

а)

2 1 1

2

г)

 

 

 

1

 

 

2

 

2

1

 

 

 

 

 

 

 

 

 

1

 

2

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

б)

 

д)

2

1

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

1

 

 

 

 

в)

 

 

е)

 

2

1

 

 

 

2 1

 

 

1

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

1

2

2

2

 

 

 

 

Рис. 3.1 Кинематические пары и их условные обозначения

В качестве признаков классификации кинематических пар могут быть: число условий связи и характер соприкосновения звеньев.

Все кинематические пары делят на классы в зависимости от количества ограничений, налагаемых на относительное движение звеньев, которые

Разработал Корчагин П.А.

13

входят в эти пары. Эти ограничения называют условиями связи в

кинематических парах /6/.

 

Твердое тело (рис. 3.2) в

 

пространстве

имеет

6 степеней

 

свободы.

 

 

 

Z

Кинематическая пара требует

X

постоянного

соприкосновения

 

звеньев,

что

 

накладывает

 

ограничения (условия связи) на их

У

движение. Число условий связи

 

обозначается

S

и

может быть

Рис. 3.2 Возможные перемещения

равно от 1 до 5.

Следовательно,

 

число степеней свободы Н звена кинематической пары в относительном движении будет равно /1/

H = 6 - S

(3.1)

Из равенства следует, что число степеней свободы Н звена кинематической пары в относительном движении может изменяться от 1 до 5. Не может быть кинематической пары, не налагающей ни одной связи, так как это противоречит определению кинематической пары. Но не может быть и кинематической пары, налагающей больше пяти связей, так как в этом случае оба звена, входящие в кинематическую пару, были бы неподвижными по отношению одно к другому, т.е. образовали бы уже не два, а одно тело /6/.

Класс кинематической пары равен числу условий связи наложенных на относительное движение каждого звена кинематической пары /6/.

По характеру соприкосновения звеньев кинематические пары делят на две группы: высшие и низшие /1/.

Кинематические пара, которая выполнена соприкасанием элементов ее звеньев только по поверхности - низшая, а выполненная соприкасанием элементов ее звеньев только по линии или в точках - высшая. В низших парах наблюдается геометрическое замыкание. В высших парах - силовое - пружиной или весом /1/.

Вращательная пара (рис. 3.1, а) - одноподвижная, допускает лишь относительное вращательное движение звеньев вокруг оси. Звенья 1 и 2 соприкасаются по цилиндрической поверхности, следовательно, это низшая пара, замкнутая геометрически /11/.

Поступательная пара (рис. 3.1, б) - одноподвижная, допускает лишь относительное поступательное движение звеньев. Звенья 1 и 2 соприкасаются по поверхности, следовательно, это низшая пара, замкнутая геометрически /11/.

Разработал Корчагин П.А.

14

Цилиндрическая пара (рис. 3.1, в) - двухподвижная, допускает независимые вращательное и поступательное относительные движения звеньев. Звенья 1 и 2 соприкасаются по цилиндрической поверхности, следовательно это низшая пара, замкнутая геометрически /11/.

Сферическая пара (рис. 3.1, г) - трехподвижная, допускает три независимых относительных вращения звеньев. Звенья 1 и 2 соприкасаются по сферической поверхности, следовательно, это низшая пара, замкнутая геометрически /11/.

Примеры четырех- и пятиподвижных пар и их условные обозначения даны на рис. 3.1, д, е. Возможные независимые перемещения (вращательные и поступательные) показаны стрелками /11/.

Низшие более износостойки, т.к. поверхность касания больше, следовательно передача одной и той же силы в низших парах происходит при меньшем удельном давлении и меньших контактных напряжениях чем в высших. Износ пропорционален удельному давлению поэтому элементы звеньев низших пар изнашиваются медленнее чем высших /11/.

3.2 Кинематическая цепь

Кинематической цепью называется система звеньев, образующих между собой кинематические пары /6/.

Кинематические цепи могут быть: плоские и пространственные, открытые и замкнутые, простые и сложные /1/.

Пространственной называют цепь, в которой точки звеньев описывают неплоские траектории или траектории, расположенные в пересекающихся плооскостях /1/.

Открытой называют цепь, в которой есть звенья, входящие только в одну кинематическую пару (рис. 3.3, а) /1/.

Замкнутой называют цепь, каждое звено которой входит не менее чем в две кинематические пары (рис. 3.3, а, б) /1/.

а)

б)

в)

Рис. 3.3 Кинематические цепи а) – открытая простая; б – замкнутая простая; в) – замкнутая сложная

Простая цепь - у которой каждое звено входит не более чем в две кинематические пары (рис. 3.3, а, б).

Разработал Корчагин П.А.

15

Сложная цепь - в которой имеется хотя бы одно звено, входящее более чем в две кинематические пары (рис. 3.3, в) /1/.

3.3 Число степеней свободы механической системы. Степень подвижности механизма. Структурные формулы

Числом степеней свободы механической системы называется число независимых возможных перемещений элементов системы /1, 4/.

Система (рис. 3.5) имеет два независимых возможных перемещения относительно 1 звена, т.е. механическая система имеет 2 степени свободы

Степенью

 

подвижности

 

 

механизма

называется

число

3

4

степеней

свободы

механизма

 

 

относительно

звена принимаемое 2

 

5

за неподвижное /1/.

 

 

 

 

Составим формулы для расчета

 

 

степени подвижности

механизма,

 

 

которые

называют

структурными

 

 

формулами.

 

 

 

 

 

1

Пусть

 

пространственный

 

 

 

 

механизм

имеет

n

подвижных

 

 

звеньев,

которые

связаны

между

 

 

собой кинематическими парами. Причем число пар пятого класса р5, четвертого класса р4, третьего - р3, второго - р2, первого - р1 /1/.

Число степеней свободы не связанных между собой n звеньев равно /1/:

H=6 n

(3.2)

Кинематические пары накладывают ограничения (условия связи). Каждая пара I кл. - одно условие связи, II кл. - два условия связи и т.д. /1/

Общее число условий связи равно /1/:

 

S=5 p5+4 p4+3 p3+2 p2+p1

(3.3)

Тогда степень подвижности пространственного механизма

определяется по формуле:

 

W=H-S,

(3.4)

или

 

W=6 n-5 p5-4 p4-3 p3-2 p2-p1.

(3.5)

это формула Малышева А.П. (1923г.)

 

Применение этой формулы возможно только в том случае если на движения звеньев, входящих в состав механизма не наложено каких-либо общих дополнительных условий.

Разработал Корчагин П.А.

16

Если на движения всех звеньев механизма в целом наложено три общих ограничения, т.е. рассматривается плоский механизм, то

структурная формула будет иметь вид /1/:

 

W=(6-3) n -(5-3) p5 -(4-3) p4=3 n-2 p5-p4

(3.6)

Формула (3.6) получила название - формула Чебышева П.Л.

для

общего вида плоских механизмов (1869г.).

 

3.4 Обобщенные координаты механизма. Начальные звенья

Степень подвижности механизма одновременно является числом независимых координат звеньев, которыми необходимо задаться, чтобы все звенья механизма имели бы вполне определенные движения.

Обобщенными координатами механизма называются независимые между собой координаты, определяющие положения всех звеньев механизма относительно стойки /11/.

Начальным звеном называется звено, которому приписывается одна или несколько обобщенных координат механизма /11/.

За начальное звено выбирают такое, которое упрощает дальнейший анализ механизма, при этом оно не всегда совпадает с входным звеном. За начальное звено в ряде случаев удобно выбирать кривошип /11/.

3.5 Лишние степени свободы. Пассивные связи

Кроме степеней свободы звеньев и связей, активно воздействующих на характер движения механизмов, в них могут встречаться степени свободы и условия связи не оказывающие никакого влияния на характер движения механизма в целом. Удаление из механизмов звеньев и кинематических пар, которым эти степени свободы и условия связи принадлежат, может быть сделано без изменения общего характера движения механизма в целом. Такие степени свободы называются лишними, а связи пассивными

/1, 6/.

Пассивными или избыточными связями называются условия связи, не оказывающие влияние на характер движения механизма /6/.

В некоторых случаях пассивные связи необходимы для обеспечения определенности движения: например, шарнирный параллелограмм (рис. 3.6), проходя через свое предельное положение, когда оси всех звеньев находятся на одной прямой, может превратиться в антипараллеограмм; для предупреждения этого сцепляют кривошипы АВ и CD пассивной связью - вторым шатуном EF. В других случаях пассивные связи повышают жесткость системы, устраняют или уменьшают влияние деформаций на

Разработал Корчагин П.А.

17

движение механизма, улучшают распределение усилий, действующих на звенья механизма и т.д. /6/.

B C B C

E F

А

D

А

D

а) б)

Рис. 3.6 Кинематическая схема параллелограммного механизма

Лишними степенями свободы называюся степени свободы, не влияющие на закон движения механизма /6/.

Нетрудно представить, что круглый ролик (см. рис. 3.6) может свободно поворачиваться вокруг своей оси, не влияя на характер движения механизма в целом. Таким образом, возможность вращения ролика является лишней степенью свободы. Ролик, представляет собой конструктивный элемент, введенный для уменьшения сопротивления, сил трения и износа звеньев. Кинематика механизма не изменится если ролик удалить и толкатель соединить непосредственн со звеном CD в кинематическую пару IV класса (см. рис. 3.6, б) /6/.

Если известно число степеней свободы плоского механизма, то можно найти число избыточных связей q для плоского механизма по формуле /11/

q = W 3 n 2 p5 p4 .

(3.7)

Для пространственного механизма формула (3.7) примет вид /11/:

 

i=5

 

q = W 6 n (6 i) pi .

(3.8)

i=1

В структурные формулы не входят размеры звеньев, поэтому при структурном анализе их можно предполагать любыми (в некоторых пределах).

Если избыточных связей нет (q=0), то сборка механизма происходит без деформации звеньев, последние как бы самоустанавливаются, а механизмы называются самоустанавливающимися. Если избыточные связи есть (q > 0), то сборка механизма и движение его звеньев становятся возможными только при деформации последних /11/.

По формулам (3.6) (3.8) проводят структурный анализ имеющихся механизмов и структурных схем новых механизмов /11/.

Разработал Корчагин П.А.

18

3.6Влияние избыточных связей на работоспособность

инадежность машин

Как было отмечено выше, при наличии избыточных связей (q > 0) механизм нельзя собрать без деформации звеньев. Такие механизмы требуют повышенной точности изготовления. В противном случае в процессе сборки звенья механизма деформируются, что вызывает нагружение кинематических пар и звеньев значительными дополнительными силами. При недостаточной точности изготовления механизма с избыточными связями трение в кинематических парах может сильно увеличиться и привести к заклиниванию звеньев. Поэтому с этой точки зрения избыточные связи в механизме нежелательны /11/.

Однако в целом ряде случаев приходится сознательно проектировать и изготавливать статически неопределимые механизмы с избыточными связями для обеспечения нужной прочности и жесткости системы, особенно при передаче больших сил /11/.

Например, коленчатый вал четырехцилиндрового двигателя (рис. 3.7) образует с подшипником А одноподвижную вращательную пару. Этого вполне достаточно с точки зрения кинематики данного механизма с одной степенью свободы (W=1). Однако, учитывая большую длину вала и значительные силы, нагружающие коленчатый вал, приходится добавлять еще два подшипника Аи А, иначе система будет неработоспособна из-

за недостаточной прочности и жесткости.

 

 

 

 

 

 

 

 

Если

это

вращательные

пары

 

 

 

 

 

 

 

 

двухподвижные

цилиндрические, то

 

 

F

F

помимо пяти основных связей будет

 

 

наложено

4 ×

2 = 8 добавочных

 

 

 

А

 

 

 

А

 

 

 

 

 

 

(повторных) связей. потребуется

 

F

 

 

 

F

высокая точность изготовления для

 

 

 

 

 

 

обеспечения соосности всех опор,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

иначе

вал

будет

сильно

 

 

Рис. 3.7

 

 

 

деформироваться, и в материале подшипников могут появиться недопустимо большие напряжения /11/.

При конструировании машин следует стремиться устранить избыточные связи или же оставлять их минимальное количество, если полное их устранение оказывается невыгодным из-за усложнения конструкции или по каким-либо другим соображениям. В общем случае оптимальное решение следует искать, учитывая наличие необходимого технологического оборудования, стоимости изготовления, требуемого

Разработал Корчагин П.А.

19

ресурса работы и надежности машины. Следовательно, это весьма сложная задача на оптимизацию для каждого конкретного случая /11/.

3.7 Структурная классификация плоских механизмов по Ассуру-Артоболевскому

В настоящее время наибольшее распространение в промышленности получили плоские механизмы. Поэтому рассмотрим принцип их структурной классификации. /6/.

Современные методы кинематического и кинетостатического анализа, а в значительной мере и методы синтеза механизмов связаны с их структурной классификацией. Структурная классификация АссураАртоболевского является одной из наиболее рациональных классификаций плоских рычажных механизмов с низшими парами. Достоинством этой классификации является то, что с ней неразрывно связаны методы кинематического, кинетостатического и динамического исследования механизмов /6/.

Ассур предложил (1914-18 гг.) рассматривать любой плоский механизм с низшими парами как совокупность начального механизма и ряда кинематических цепей с нулевой степенью подвижности /1, 6/.

Начальным (или исходным) механизмом (рис. 3.8) называется совокупность начальных звеньев и стойки. /6/.

2

2

3

1

1

 

а)

б)

 

 

Рис. 3.8

 

 

а) исходный механизм I класса, 1 порядка;

 

 

б) исходный механизм I класса, 2 порядка;

 

Группой Ассура (рис. 3.9, а) или структурной группой называется кинематическая цепь, число степеней свободы которой равно нулю, относительно элементов ее внешних пар, причем группа не должна распадаться на более простые кинематические цепи удовлетворяющие этому условию. Если такое распадение возможно, то такая кинематическая цепь состоит из нескольких групп Ассура /Л.3/.

Разработал Корчагин П.А.

20

 

 

2

3

1

2

1

4

 

 

 

 

а)

Рис. 3.9

б)

 

 

 

На рис. 3.9, б показана кинематическая цепь степень подвижности которой равна

W=3 n 2 p5=3 4 2 6=0

(3.9)

Но несмотря на это, данная цепь не является группой Ассура, так как распадается на две группы (выделенные тонкой линией) степень подвижности которых также равна нулю.

Степень подвижности гр. Ассура равна:

W=3 n 2 p5=0

(3.10)

откуда

3

 

 

p5 =

n

(3.11)

2

 

 

 

Из формулы (3.11) видно, что n может быть только целым числом, кратным двум, так как количество кинематических пар p5 может быть

целым числом. Тогда

можно

составить

таблицу,

определяющую

количество кинематических пар и звеньев в группе Ассура /1/

 

 

 

 

 

 

 

 

 

Таблица 3.1

 

 

 

 

 

 

 

 

 

 

 

Количество звеньев

 

 

n

2

4

6

8

 

 

Количество кинематических пар

 

p5

3

6

9

12

 

По предложению Артоболевского структурным группам присваивается класс и порядок /1/.

Класс гуппы Ассура равен числу кинематических пар, входящих в наиболее сложный замкнутый контур, образованный внутренними кинематическими парами /1/.

Порядок группы Ассура равен числу свободных элементов кинематических пар /1/.

Класс механизма равен наивысшему классу группы Ассура, входящему в его состав /1/.

Исходному механизму (см. рис. 3.8) присваивается первый класс. Первый столбик таблицы 3.1 относится к гр. Ассура II класса; второй -

III класса и т.д. Примеры групп Ассура представлены на рис. 3.10.

Разработал Корчагин П.А.

21

б)

в)

г)

Рис. 3.10 Группы Ассура:

а) – II класс, 2 порядок; б) – III класс 3 порядок; в) – III класс 4 порядок;

г) – IV класс 4 порядок

Простейшее сочетание чисел звеньев и пар, удовлетворяющих условию (3.11), будет n=2, p5=3. Группу, имеющую два звена и три пары V класса, называют группой II второго класса второго порядка или двухповодковой группой. Двухповодковые группы бывают пяти видов (таблица 3.2). Двухповодковая группа с тремя поступательными парами невозможна, так как будучи присоединена к стойке, она не обладает нулевой подвижностью и может перемещаться /6/.

 

 

 

 

Таблица 3.2

1 вид

2 вид

3 вид

4 вид

5 вид

3.8 Пример структурного анализа плоского механизма

Проведем структурный анализ суммирующего механизма изображенного на рис. 3.11.

Порядок структурного анализа:

1. Обнаружить и исключить лишние степени свободы и пассивные связи (в данном случае вращение роликов)

Разработал Корчагин П.А.