Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Chemiluminescence in Analytical Chemistry

.pdf
Скачиваний:
270
Добавлен:
15.08.2013
Размер:
5.81 Mб
Скачать

166

Stigbrand et al.

mine, were most sensitively detected, but monophenols and sugars could also be determined.

Even metal ions have been determined by the POCL reaction. Steijger et al. [114] observed in batch experiments an enhancement of the total light emitted whenever metal ions were present. Copper gave the highest increase, approximately an order of magnitude, but other metal ions such as Cr3 , Pb2 , Fe3 , Mn2 , Zn2 , and Al3 also showed increases in signal intensity. The mechanism for this enhancement is not completely understood; the authors suggested that it was due to stabilization of the oxalate ester-imidazole complex by the metal ion. In a later study, the influence of Cu2 was further investigated [115]. Quass and Klockow [116] developed a method for the determination of hydrogen peroxide and Fe2 in atmospheric water. To increase the selectivity, catalase was added to the reaction mixture when Fe2 was determined, and 1,10-phenanthroline, which forms a complex with Fe2 , was added when hydrogen peroxide was determined. In a FIA system, detection limits were 40 nM for hydrogen peroxide and 28 nM for Fe2 . Sato and Tanaka [117] used a different approach to determine metal ions. The CL emission due to the formation of a fluorescent complex between metal ions and 8-hydroxyquinoline was measured. A separation of Zn2 , Al3 , and In3 , all as 8-hydroxyquinoline complexes, was successfully detected by means of the POCL reaction.

A mixture consisting of oxalic acid, carbodiimide, fluorescer, and hydrogen peroxide is known to produce strong visible light [185]. Albrecht et al. used this reaction to determine oxalate in urine [118] and serum [119].

Capomacchia et al. [120] utilized the background emission present when DNPO and hydrogen peroxide are mixed to detect ouabain and urea. In the presence of these analytes, an intensity enhancement was observed and detection limits were in the picomole range.

4. CONCLUSIONS AND FUTURE TRENDS

In analytical chemistry there is an ever-increasing demand for rapid, sensitive, low-cost, and selective detection methods. When POCL has been employed as a detection method in combination with separation techniques, it has been shown to meet many of these requirements. Since 1977, when the first application dealing with detection of fluorophores was published [60], numerous articles have appeared in the literature [6–8]. However, significant problems are still encountered with derivatization reactions, as outlined earlier. Consequently, improvements in the efficiency of labeling reactions will ultimately lead to significant improvements in the detection of these analytes by the POCL reaction. A promising trend is to apply this sensitive chemistry in other techniques, e.g., in supercritical fluid chromatography [186] and capillary electrophoresis [56–59]. An alter-

Peroxyoxalate Chemiluminescence

167

native approach to derivatization reactions involves the enzymatic conversion of substrates to hydrogen peroxide. The number of applications appearing in the literature now appears to be limited by the number and purity of commercially available enzymes; this field is expected to continue to be an area of significant growth.

Although POCL is regarded as a highly sensitive technique, a considerable fraction of the energy may be lost in dark-side reactions in aqueous solutions. A better understanding of the mechanism and clarification of the identity of reactive intermediates are important to minimize side reactions and to exploit the full potential of the POCL reaction. The discovery of ODI as an intermediate in imid- azole-mediated POCL has led to a better understanding of the initial reaction steps. Many of the mechanistic studies undertaken earlier have been hampered by the complex role of this catalyst. Now the light-generating reactions occurring at a later stage in the reaction chain can be studied without being masked by the ODI-forming steps. A better understanding of the POCL reaction is therefore to be expected in the future.

The screening of new catalysts is important to guide the synthesis of new amide-based oxalic acid derivatives. Most reagents presently employed in this chemistry are based on different substituted phenyl esters, which indeed provide good quantum yields. However, their limited solubility in aqueous solutions and their inherent background emission are serious drawbacks when used in analytical applications. ODI is by no means the optimal reagent, but it offers certain advantages compared to the commonly used oxalate esters. First, ODI provides quantum yields comparable to the combination of TCPO and imidazole, but with faster kinetics. Second, ODI has a high solubility in acetonitrile and it does not precipitate in water, which simplifies the coupling of completely aqueous separations or FIA sample streams with POCL detection. Finally, if combined with immobilized fluorophores, a single-line flow system is sufficient for sensitive determinations of hydrogen peroxide, since no additional catalyst is required. The expansion of POCL chemistry into purely aqueous chemical environments, such as those required in immunoassay and in situ bioassays, may ultimately be possible with further refinements to low-background-emission, water-soluble oxamide POCL reagents.

REFERENCES

1.EA Chandross. Tetrahedron Lett 12:761–765, 1963.

2.MM Rauhut, BG Roberts, AM Semsel. J Am Chem Soc 88:3604–361, 1966.

3.MM Rauhut, LJ Bollyky, BG Roberts, M Loy, RH Whitman, AV Iannotta, AM Semsel, RA Clarke. J Am Chem Soc 89:6515–6522, 1967.

4.MM Rauhut. Acc Chem Res 2:80–87, 1969.

168

Stigbrand et al.

5.GJ de Jong, PJM Kwakman. J Chromatogr 492:319–343, 1989.

6.K Robards, PJ Worsfold. Anal Chim Acta 266:147–173, 1992.

7.PJM Kwakman, UATh Brinkman. Anal Chim Acta 266:175–192, 1992.

8.AR Bowie, MG Sanders, PJ Worsfold. J Biolumin Chemilumin 11:61–90, 1996.

9.DR Maulding, RA Clarke, BG Roberts, MM Rauhut. J Org Chem 33:250–254, 1968.

10.S-S Tseng, AG Mohan, LC Haines, LS Vizcarra, MM Rauhut. J Org Chem 44: 4113–4116, 1979.

11.AG Mohan, RG Dulina, AA Doering. Final Report to N.A.S.A., Contract NAS522303, American Cyanamid Company, Chemical Research Division, Bound Brook, NJ, 1976.

12.AG Mohan, S-S Tseng, MM Rauhut, FJ Arthen, RG Dulina, VM Kamhi, DE McKay, RJ Manfre, DJ Oldfedt, LS Vizcarra. Final Report to N.A.S.A., Contract N0014-77-C-0634, American Cyanamid Company, Chemical Research Division, Bound Brook, NJ, 1982.

13.ML Grayeski, EJ Woolf, PJ Helly. Anal Chim Acta 183:207–215, 1986.

14.EJ Woolf, ML Grayeski. In: D Eastwood, LJ Cline Love, eds. Progress in Analytical Luminescence. Philadelphia: American Society for Testing and Materials, 1988, pp 67–74.

15.EJ Woolf, ML Grayeski. J Lumin 39:19–27, 1987.

16.R DeLavalle, ML Grayeski. Anal Biochem 197:340–346, 1991.

17.N Dan, M-L Lau, ML Grayeski. Anal Chem 63:1766–1771, 1991.

18.K Nakashima, S Kawaguchi, RS Givens, S Akiyama-Anal Sci 6:833–836, 1990.

19.P van Zoonen, DA Kamminga, C Gooijer, NH Velthorst, RW Frei. Anal Chim Acta 167:249–256, 1985.

20.P van Zoonen, DA Kamminga, C Gooijer, NH Velthorst, RW Frei, G Gu¨bitz. Anal Chim Acta 174:151–161, 1985.

21.NW Barnett, R Bos, SW Lewis, RA Russell. Analyst 123:1239–1245, 1998.

22.NW Barnett, R Bos, RN Evans, RA Russell. Anal Chim Acta 403:145–154, 2000.

23.K Honda, K Miyaguchi, K Imai. Anal Chim Acta 177:103–110, 1985.

24.K Imai, H Nawa, M Tanaka, H Ogata. Analyst 111:209–211, 1986.

25.K Nakashima, K Maki, S Akiyama, WH Wang, Y Tsukamoto, K Imai. Analyst 114:1413–1416, 1989.

26.D Klockow, P Jacob. Chemistry of Multiphase Atmospheric Systems Berlin: Springer, 1986, pp 117–130.

27.P Jacob, TM Tavares, D Klockow. Fresenius Anal Chem 325:359–364, 1986.

28.P Jacob, D Klockow. Fresenius Anal Chem 346:429–434, 1993.

29.M Stigbrand, A Karlsson, K Irgum. Anal Chem 68:3945–3950, 1996.

30.P van Zoonen, I de Herder, C Gooijer, NH Velthorst, RW Frei. Anal Lett 191: 1949–1961, 1986.

31.K Nakashima, M Wada, N Kuroda, S Akiyama, K Imai. J Liq Chromatogr 17: 2111–2126, 1994.

32.H Sakagami, M Hosaka, H Arakawa, M Maeda, K Satoh, Y Ida, K Asano, T Hisamitsu, M Takimoto, H Ota, M Inagaki, K Sasuga, S Sho, T Tanaka, N Utsumi, T Oi, M Kochi. Anticancer Res 18:2519–2524, 1998.

33.M Tajima, M Toguchi, Y Kanda, S Kunii, M Hosaka, H Arakawa, M Maeda, K Satoh, K Asano, M Kochi, H Sakagami. Anticancer Res 18:1697–1702, 1998.

Peroxyoxalate Chemiluminescence

169

34.DC Williams III, GF Huff, WR Seitz. Anal Chem 48:1003–1006, 1976.

35.K Nakashima, K Maki, S Kawaguchi, S Akiyama, Y Tsukamoto, K Imai. Anal Sci 7:709–713, 1991.

36.N Kiba, H Koemado, M Furusawa. Anal Sci 11:605–609, 1995.

37.K Nakashima, N Hayashida, S Kawaguchi, S Akiyama, Y Tsukamota, K Imai. Anal Sci 7:715–718, 1991.

38.VI Rigin. J Anal Chem USSR 34:619–623, 1979.

39.MS Abdel-Latif, GG Guilbault. Anal Chem 60:2671–2674, 1988.

40.VI Rigin. J Anal Chem USSR 33:1265–1270, 1978.

41.VI Rigin. J Anal Chem USSR 38:1328–1330, 1983.

42.VI Rigin. J Anal Chem USSR 36:1111–1115, 1981.

43.H Jansen, UATh Brinkman, RW Frei. J Chromatogr 440:217–223, 1988.

44.M Wada, N Kuroda, S Akiyama, K Nakashima. Anal Sci 13:945–950, 1997.

45.A Kamei, S Ohkubo, S Saito, S Takagi. Anal Chem 61:1921–1924, 1989.

46.M Wada, N Kuroda, T Ikenaga, S Akiyama, K Nakashima. Anal Sci 12:807–810, 1996.

47.G Scott, WR Seitz, J Ambrose. Anal Chim Acta 115:221–228, 1980.

48.K Honda, K Miyaguchi, H Nishino, H Tanaka, T Yao, K Imai. Anal Biochem 153: 50–53, 1986.

49.P van Zoonen, C Gooijer, NH Velthorst, RW Frei, JH Wolf, J Gerrits, FJ Flentge. J Pharm Biomed Anal 5:485–492, 1987.

50.M Emteborg (b. Stigbrand), K Irgum, C Gooijer, UATh Brinkman. Anal Chim Acta 357:111–118, 1997.

51.M Wada, K Nakashima, N Kuroda, S Akiyama, K Imai. J Chromatogr 678:129– 136, 1996.

52.T Hasebe, E Hasegawa, T Kawashima. Anal Sci 12:881–885, 1996.

53.JR Poulsen, JW Birks, G Gu¨bitz, P van Zoonen, C Gooijer, NH Velthorst, RW Frei. J Chromatogr 360:371–383, 1986.

54.JR Poulsen, JW Birks. Anal Chem 62:1242–1251, 1990.

55.I Aichinger, G Gu¨bitz, JW Birks. J Chromatogr 523:163–172, 1990.

56.N Wu, CW Huie. J Chromatogr 634:309–315, 1993.

57.T Hara, S Kayama, H Nishida, R Nakajima. Anal Sci 10:223–225, 1994.

58.K Tsukagoshi, A Tanaka, R Nakajima, T Hara. Anal Sci 12:525–528, 1996.

59.LL Shultz, S Shippy, TA Nieman, JV Sweedler. J Microcol Sep 10:329–337, 1998.

60.TG Curtis, WR Seitz. J Chromatogr 134:343–350, 1977.

61.S Kobayashi, K Imai. Anal Chem 52:424–427, 1980.

62.K Miyaguchi, K Honda, K Imai. J Chromatogr 303:173–176, 1984.

63.N Hanaoka, H Tanaka. J Chromatogr 606:129–132, 1992.

64.K Miyaguchi, K Honda, T Toyo’oka, K Imai. J Chromatogr 352:255–260, 1986.

65.PJM Kwakman, H-P van Schaik, UATh Brinkman, GJ de Jong. Analyst 116:1385– 1391, 1991.

66.T Toyo’oka, M Ishibashi, T Terao. J Chromatogr 627:75–86, 1992.

67.K Honda, K Miyaguchi, K Imai. Anal Chim Acta 177:111–120, 1985.

68.ML Grayeski, JK DeVasto. Anal Chem 59:1203–1206, 1987.

69.SW Lewis, PJ Worsfold, A Lynes, EH McKerrell. Anal Chim Acta 266:257–264, 1992.

170

Stigbrand et al.

70.BW Sandmann, ML Grayeski. J Chromatogr 653:123–130, 1994.

71.M Tod, M Prevot, J Chalom, R Farinotti, G Mahuzier. J Chromatogr 542:295– 306, 1991.

72.G Mellbin, BEF Smith. J Chromatogr 312:203–210, 1984.

73.Y Hamachi, K Nakashima, S Akiyama. J Liq Chrom Rel Technol 20:2377–2387, 1997.

74.PJM Kwakman, H Koelewijn, I Kool, UATh Brinkman, GJ de Jong. J Chromatogr 511:155–166, 1990.

75.M Tod, M Prevot, M Poulou, R Farinotti, J Chalom, G Mahuzier. Anal Chim Acta 223:309–317, 1989.

76.K Hayakawa, K Hasegawa, N Imaizumi, OS Wong, M Miyazaki. J Chromatogr 464:343–352, 1989.

77.K Nakashima, K Suetsugo, K Yoshida, S Akiyama, S Uzo, K Imai. Biomed Chromatogr 6:149–154, 1992.

78.S Kobayashi, J Sekino, K Honda, K Imai. Anal Biochem 112:99–104, 1981.

79.C Fu, H Xu. Analyst 120:1147–1151, 1995.

80.C Fu, H Xu, Z Wang. J Chromatogr 634:221–227, 1993.

81.A Ellingson, HT Karnes. Biomed Chromatogr 12:8–12, 1998.

82.R Weinberger, T Koziol, G Millington. Chromatographia 19:452–456, 1984.

83.K Imai, S Higashidate, A Nishitani, Y Tsukamota, M Ishibashi, J Shoda, T Osuga. Anal Chim Acta 227:21–27, 1989.

84.T Koziol, ML Grayeski, R Weinberger. J Chromatogr 317:355–366, 1984.

85.S Uzu, K Imai, K Nakashima, S Akiyama. J Pharm Biomed Anal 10:979–984, 1992.

86.S Higashidate, K Hibi, M Senda, S Kanda, K Imai. J Chromatogr 515:577–584, 1990.

87.PJM Kwakman, DA Kamminga, UATh Brinkman, GJ de Jong. J Pharm Biomed Anal 9:753–759, 1991.

88.O Nozaki, Y Ohba, K Imai. Anal Chim Acta 205:255–260, 1988.

89.P Appelblad, T Jonsson, T Ba¨ckstro¨m, K Irgum. Anal Chem 70:5002–5009, 1998.

90.L Nondek, RE Milofsky, JW Birks. Chromatographia 32:33–39, 1991.

91.H Akiyama, T Toida, T Imanari. Anal Sci 7:807–809, 1991.

92.H Akiyama, S Shidawara, A Mada, H Toyoda, T Toida, T Imanari. J Chromatogr 579:203–207, 1992.

93.B Mann, ML Grayeski. J Chromatogr 386:149–158, 1987.

94.PJM Kwakman, DA Kamminga, UATh Brinkman. J Chromatogr 553:345–356, 1991.

95.J Cepas, M Silva, D Pere´z-Bendito. Anal Chem 66:4079–4084, 1994.

96.J Cepas, M Silva, D Pe´rez-Bendito. Anal Chim Acta 314:87–94, 1995.

97.J Cepas, M Silva, D Pe´rez-Bendito. Analyst 121:49–54, 1996.

98.J Cepas, M Silva, D Pe´rez-Bendito. Anal Chem 67:4376–4379, 1995.

99.J Cepas, M Silva, D Pe´rez-Bendito. J Chromatogr 749:73–80, 1996.

100.KW Sigvardson, JW Birks. Anal Chem 55:432–435, 1983.

101.AN Gachanja, PJ Worsfold. Anal Proc 29:61–63, 1992.

102.KW Sigvardson, JM Kennish, JW Birks. Anal Chem 56:1096–1102, 1984.

103.KW Sigvardson, JW Birks. J Chromatogr 316:507–518, 1984.

Peroxyoxalate Chemiluminescence

171

104.A Nishitani, Y Tsukamoto, S Kanda, K Imai. Anal Chim Acta 251:247–253, 1991.

105.M Lin, W Huie. Anal Chim Acta 339:131–138, 1997.

106.P van Zoonen, DA Kamminga, C Gooijer, NH Velthorst, RW Frei. Anal Chem 58:1245–1248, 1986.

107.P van Zoonen, H Bock, C Gooijer, NH Velthorst, RW Frei. Anal Chim Acta 200: 131–141, 1987.

108.JK DeVasto, ML Grayeski. Analyst 116:443–447, 1991.

109.M Katayama, H Takeuchi, H Taniguchi. Anal Chim Acta 287:83–88, 1994.

110.M Katayama, H Taniguchi, Y Matsuda, S Akihama, I Hara, H Sato, S Kaneko, Y Kuroda, S Nozawa. Anal Chim Acta 303:333–340, 1995.

111.J Chimeno, R von Wandruszka. Anal Lett 22:2059–2064, 1989.

112.MA Abubaker, R von Wandruszka. Anal Lett 24:93–102, 1991.

113.O Nozaki, T Iwaeda, Y Kato. J Biolum Chemilum 10:339–344, 1995.

114.OM Steijger, PHM Rodenburg, H Lingeman, UATh Brinkman, JJM Holthuis. Anal Chim Acta 266:233–241, 1992.

115.OM Steijger, HCM den Nieuwenboer, H Lingeman, UATh Brinkman, JJM Holthuis, AK Smilde. Anal Chim Acta 320:99–105, 1996.

116.U Quass, D Klockow. Int J Environ Anal Chem 60:361–375, 1995.

117.K Sato, S Tanaka. Mikrochem J 53:93–98, 1996.

118.S Albrecht, H Brandl, W-D Bo¨hm, R Beckert, H Kroschwitz, V Neumeister. Anal Chim Acta 255:413–416, 1991.

119.S Albrecht, H Hornak, H Brandl, T Freidt, WD Bo¨hm, K Weis, A Reinschke. Fresenius J Anal Chem 343:175–176, 1992.

120.AC Copomacchia, RN Jennings, SM Hemingway, P D’Souza, W Prapaitrakul, A Gingle. Anal Chim Acta 196:305–310, 1987.

121.S Uzu, K Imai, K Nakashima, S Akiyama. Analyst 116:1353–1357, 1991.

122.PJM Kwakman, UATh Brinkman, RW Frei, GJ de Jong, FJ Spruit, NGFM Lammers, JHM van den Berg. Chromatographia 24:395–399, 1987.

123.PJ Ryan, TW Honeyman. J Chromatogr 312:461–466, 1984.

124.EP Lankmayr, KW Budna, K Mu¨ller, F Nachtmann, F Rainer. J Chromatogr 222: 249–255, 1981.

125.N Hanaoka, RS Givens, RL Schowen, T Kuwana. Anal Chem 60:2193–2197, 1988.

126.R Gohda, K Kimoto, T Santa, T Fukushima, H Homma, K Imai. Anal Sci 12:713– 719, 1996.

127.N Hanaoka, H Tanaka, A Nakamoto, M Takada. Anal Chem 63:2680–2685, 1991.

128.GJ de Jong, N Lammers, FJ Spruit, RW Frei, UATh Brinkman. J Chromatogr 353: 249–257, 1986.

129.W Baeyens, J Bruggeman, B Lin. Chromatographia 27:191–193, 1989.

130.W Baeyens, J Bruggeman, C Dewaele, B Lin, K Imai. J Biolum Chemilum 5:13– 23, 1990.

131.PD Bryan, AC Capomacchia. J Pharm Biomed Anal 9:855–860, 1991.

132.N Hanaoka. J Chromatogr 503:155–165, 1990.

133.RJ Weinberger. J Chromatogr 314:155–165, 1984.

134.GJ de Jong, N Lammers, FJ Spruit, UATh Brinkman, RW Frei. Chromatographia 18:129–133, 1984.

135.AG Hadd, JW Birks. Selective Detectors. New York: Wiley, 1995, pp 209–240.

172

Stigbrand et al.

136.G Orosz, RS Givens, RL Schowen. Crit Rev Anal Chem 26:1–27, 1996.

137.HF Cordes, HP Richter, CA Heller. J Am Chem Soc 91:7209, 1969.

138.JJ DeCorpo, A Baronavski, MV McDowell, FE Saalfeld. J Am Chem Soc 94:2879– 2880, 1972.

139.CLR Catherall, TF Palmer, RB Cundall. J Chem Soc Faraday Trans 2 80:823– 834, 1984.

140.CLR Catherall, TF Palmer, RB Cundall. J Chem Soc Faraday Trans 2 80:837– 849, 1984.

141.MM Rauhut, AM Semsel. Final Report to the Office of Naval Research, Contract Nr. N00014-73-C-0343, 1974. American Cyanamid Co. Chemical Research Division, Bound Brook, NJ.

142.MFD Steinfatt. Bull Soc Chim Belg 94:85–86, 1985.

143.RE Milofsky, JW Birks. J Am Chem Soc 113:9715–9723, 1991.

144.B Mann, ML Grayeski. Anal Chem 62:1532–1536, 1990.

145.NW Barnett, R Bos, SW Lewis, RA Russel. Anal Comm 34:17–20, 1997.

146.P Prados, T Santa, H Homma, K Imai. Anal Sci 11:575–580, 1995.

147.HP Chokshi, M Barbush, RG Carlson, RS Givens, T Kuwana, RL Schowen. Biomed Chromatogr 4:96–99, 1990.

148.CV Stevani, LP de Arruda Campos, WJ Baader. J Chem Soc Perkin Trans 2:1645– 1648, 1996.

149.JR Hohman, RS Givens, RG Carlson, G Orosz. Tetrahedron Lett 37:8273–8276, 1996.

150.CV Stevani, WJ Baader. J Phys Org Chem 10:593–599, 1997.

151.M Stigbrand, E Ponte´n, K Irgum. Anal Chem 66:1766–1770, 1994.

152.M Emteborg (b. Stigbrand), E Ponte´n, K Irgum. Anal Chem 69:2109–2114, 1997.

153.H Neuvonen. J Chem Soc Perkin Trans 2:951–954, 1995.

154.AG Hadd, JW Birks. J Org Chem 61:2657–2663, 1996.

155.AG Hadd, AL Robinson, KL Rowlen, JW Birks. J Org Chem 63:3023–3031, 1998.

156.CV Stevani, DF Lima, VG Toscano, WJ Baader. J Chem Soc Perkin Trans 2:989– 995, 1996.

157.H Neuvonen. J Biolum Chemilum 12:241–248, 1997.

158.EH White, PD Wildes, J Wieko, H Doshan, CC Wei. J Am Chem Soc 95:7050– 7058, 1973.

159.K Miyaguchi, K Honda, K Imai. J Chromatogr 136:501–505, 1984.

160.K Imai, Y Matsunaga, Y Tsukamoto, A Nishitani. J Chromatogr 400:169–176, 1987.

161.K Imai, A Nishitani, Y Tsukamoto, W-H Wang, S Kanda, K Hayakawa, M Miyazaki. Biomed Chromatogr 4:100–104, 1990.

162.G Orosz, K Torkos, J Borossay. Acta Chim Hung 128:911–917, 1991.

163.M Orlovic, RL Schowen, RL Givens, F Alvarez, B Matuszewski, N Parekh. J Org Chem 54:3606–3610, 1989.

164.JF Kirsch, WP Jencks. J Am Chem Soc 86:833–837, 1964.

165.JF Kirsch, WP Jencks. J Am Chem Soc 86:837–846, 1964.

166.T Jonsson, M Emteborg (b. Stigbrand), K Irgum. Anal Chim Acta 361:205–215, 1998.

Peroxyoxalate Chemiluminescence

173

167.FJ Alvarez, JP Parekh, B Matusewski, RS Givens, T Higuchi, RL Schowen. J Am Chem Soc 108:6435–6437, 1986.

168.JH Lee, SY Lee, K-J Kim. Anal Chim Acta 329:117–126, 1996.

169.GB Schuster. Acc Chem Res 12:366–373, 1979.

170.F McCapra, K Perring, RJ Heart, RA Hann. Tetrahedron Lett 22:5087–5090, 1981.

171.P Lechtken, NJ Turro. Mol Photochem 6:95–99, 1974.

172.SC Kang, K-J Kim. Bull Korea Chem Soc 11:224–227, 1990.

173.JG Calvert, A Lazrus, GL Kok, BG Heikes, JG Walega, J Lind, CA Cantrell. Nature 317:27–35, 1985.

174.Y-N Lind, JA Lind. J Geophys Res 91:2793–2800, 1986.

175.D Price, PJ Worsfold, RFC Mantoura. Anal Chim Acta 298:121–128, 1994.

176.TR Holm, GK George, MJ Barcelona. Anal Chem 59:582–586, 1987.

177.AL Lazrus, LK Gregory, JA Lind, SN Gitlin, BG Heikes, RE Shetter. Anal Chem 58:594–597, 1986.

178.PK Dasgupta, H Hwang. Anal Chem 57:1009–1012, 1985.

179.L Gorton, G Marko-Varga. In: S Lam, G Malikin, eds. Analytical Applications of Immobilized Enzyme Reactors. London: Blackie Academic & Professional, Chapman & Hall, 1994, pp 1–21.

180.LD Bowers, PR Johnson. Biophys Biochim Acta 661:100–105, 1981.

181.P Kwakman. Thesis, Free University Amsterdam, 1991.

182.A Velasco, M Silva, D Pere´z-Bendito. Anal Chem 64:2359–2365, 1992.

183.K Honda, J Sekino, K Imai. Anal Chem 55:940–943, 1983.

184.C Gooijer, NH Velthorst. Biomed Chromatogr 4:92–95, 1990.

185.MM Rauhut, RA Sheehan, RA Clarke, AM Semsel. Photochem Photobiol 4:1097– 1110, 1965.

186.BW Sandmann, ML Grayeski. Chromatographia 38:163–167, 1994.

8

Kinetics in Chemiluminescence Analysis

Dolores Pe´rez-Bendito and Manuel Silva

University of Co´rdoba, Co´rdoba, Spain

1.

INTRODUCTION

175

2.

KINETIC ASPECTS OF CHEMILUMINESCENCE

176

3.

ANALYTICAL METHODOLOGIES

180

 

3.1

Conventional Mixing

180

 

3.2

Stopped-Flow Technique

182

 

3.3

Continuous-Addition-of-Reagent Technique

189

 

3.4

Analyte Pulse Perturbation (with oscillating reactions)

197

4.

RECENT APPROACHES TO MULTICOMPONENT

 

 

CHEMILUMINESCENCE-BASED DETERMINATIONS

200

 

4.1

Instrumental Discrimination

201

 

4.2

Time-Resolved Chemiluminescence

202

 

4.3

Kinetometric Approaches

204

1. INTRODUCTION

Chemiluminescence (CL) is the emission of the electromagnetic (ultraviolet, visible, or near infrared) radiation by molecules or atoms resulting from a transition from an electronically excited state to a lower state (usually the ground state) in which the excited state is produced in a chemical reaction. The CL phenomenon is relatively uncommon because, in most chemical reactions, excited molecules

175

Соседние файлы в предмете Химия