Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

The Nitro group in organic sysnthesis - Feuer

.pdf
Скачиваний:
82
Добавлен:
15.08.2013
Размер:
4.7 Mб
Скачать

 

 

 

 

 

 

2.1 NITRATION OF HYDROCARBONS 19

 

O

 

 

-

 

O

 

 

 

 

 

 

NO2

 

(2.50)

 

 

 

 

 

 

 

 

O

Br

 

 

O

NO2

 

 

 

 

 

 

 

 

 

 

Solvent

 

 

Condition

Yield (%)

 

 

 

 

 

 

 

 

 

NaNO2

DMSO

 

 

 

 

RT, 12 h

35

 

NaNO2

DMSO-urea

 

 

RT, 12 h

36

 

KNO2

DMSO 18-crown-6

RT, 18 h

37

 

 

DMSO

 

 

 

 

 

 

 

NaNO2

phloroglucinol

 

 

RT, 18 h

51

 

AgNO2

Et2O

 

 

 

 

35 °C, 96 h

47

 

IRA-900-NO

Benzene

 

 

 

 

RT, 36 h

82

 

2

 

 

 

 

 

 

 

 

 

(CH2)10Br

AgNO2

 

(CH2)10NO2

 

 

 

 

N

 

 

 

Et2O, 48 h

N

(2.51)

 

 

 

 

 

58%

 

 

 

 

 

 

 

 

Table 2.4 Synthesis of nitro compounds from halides

Halide

 

Condition

Product

Yield (%)

Ref.

Br

O

 

O2N

O

63

98

NaI, acetone

 

 

 

 

 

 

 

 

 

N Ph

NaNO2, DMSO

 

N Ph

 

 

 

OTs

NaI, DMF

 

NO2

67

99

 

 

 

 

 

 

NaNO2, DMF

 

 

 

 

Br O

 

AgNO2, Et2O

NO2 O

 

78

100

 

Si

 

 

Si

 

 

 

O

 

 

O

 

 

Me

 

 

Me

 

 

NC

CO2Et

 

NC

CO2Et

 

 

Me

 

NaNO2, DMF

Me

 

58

101

 

Me

 

Me

Br

Et

 

NO2

Et

 

 

 

 

I NaNO2, DMSO

 

NO2

60

102

 

(CH2)6Br

NaNO2, DMSO

 

(CH2)6NO2

70

103

 

OH

 

OH

 

 

I

 

 

NO2

 

 

 

O

O

AgNO2, Et2O

O

O

67

104

Si

Si

 

Si

Si

 

 

20 PREPARATION OF NITRO COMPOUNDS

A number of nitro compounds used in natural product synthesis have been prepared by the nitration of alkyl halides. Some recent examples are summarized in Table 2.4.

β-Nitro carbonyl compounds are important for synthesis of natural products. The reaction of alkyl vinyl ketones with sodium nitrite and acetic acid in THF gives the corresponding β-nitro carbonyl compounds in 42–82%.105 This method is better for the preparation of β-nitro carbonyl compounds than the nitration of the corresponding halides.

Schneider and Busch have showed that tetraaza[8.1.8.1]paracyclophane catalyzes the nitration of alkyl bromides with sodium nitrite. In dioxane-water (1:1) at 30 °C, the reaction of 2-bromomethylnaphthalene with sodium nitrite is accelerated by a factor of 20 in the presence of the catalyst.106 Concomitantly, the product ratio of [R-ONO]: [RNO2] changes from 0.50:1 to 0.16:1. Thus, an accumulation of nitrite ions at the positively charged cyclophanes or IRA-900-nitrite form provides a new method for selective nitration of alkyl halides.

2.2 SYNTHESIS OF NITRO COMPOUNDS BY OXIDATION

2.2.1 Oxidation of Amines

The direct oxidation of primary amines into the corresponding nitro derivatives is very useful for fundamental and industrial applications because it provides nitro compounds, which may otherwise be difficult to synthesize by direct nitration methods. Efficient synthetic methods for the conversion of primary amines into the nitro compounds are described in this section. Saturated primary amines undergo oxidation reactions by ozone to give the corresponding nitroalkanes accompanied by several other compounds depending on the reaction conditions.107 This drawback is overcome by ozonation on silica gel. Amines are absorbed on the silica gel by mixing with dry silica gel (dried for 24 h at 450 °C). The silica gel (ca 30 g) containing the amine (0.1–0.2 wt/wt%) was cooled to –78 °C and a stream of 3% of ozone in oxygen passed through it. By this procedure, nitro compounds are obtained in 60–70% yield (Eq. 2.52).108

1-Nitroadamantane is prepared by oxidation of 1-aminoadamantane with peracetic acid and ozone in 95% yield.109

 

 

 

O3

 

R

 

NH2

 

R

 

NO2

(2.52)

 

 

 

 

 

 

silica gel

 

 

 

 

 

60–70%

 

The use of heterogeneous catalysts in the liquid phase offers several advantages compared with homogeneous counterparts, in that it facilitates ease of recovery and recycling. A chro- mium-containing medium-pore molecular sieve (Si:Cr > 140:1), CrS-2, efficiently catalyzes the direct oxidation of various primary amines to the corresponding nitro compounds using 70% t-butylhydroperoxide (TBHP).110

Aliphatic and aromatic primary amines are rapidly and efficiently oxidized to nitro compounds by dimethyldioxirane.111 Dimethyldioxirane is prepared by reaction of OXONE (DuPont trademark) 2KHSO5-KHSO4-K2SO4 with buffered aqueous acetone.112

In a typical reaction, n-butylamine (0.052 g, 0.7 mmol) in 5 ml of acetone is treated with 95 ml of dimethyldioxirane in acetone solution (0.05 M). The solution is kept at room temperature for 30 min with the exclusion of light (Eq. 2.53). Aromatic amines are converted into nitro compounds by oxidation using OXONE itself.113

R NH2

O O

R NO2

(2.53)

acetone

 

80–90%

 

 

 

 

2.2 SYNTHESIS OF NITRO COMPOUNDS BY OXIDATION

21

Oxidation of amines to nitro compounds has been carried out with peracids such as peracetic acid or peroxytrifluoroacetic acid.114 However, the difficulty in handling the hazardous nature of the anhydrous peracids makes these methods less attractive. Gilbert found a general, high-yield synthesis of nitroalkanes from amines using m-chloroperbenzoic acid (m-CPBA) at elevated temperatures.115 A simple synthesis of fully saturated 2-nitrosugar derivatives from the corresponding amino derivatives utilizes an m-CPBA and sodium sulfate reagent system, giving the product in good yields (Eq. 2.54).116

AcO

 

 

AcO

 

 

 

 

 

O

 

 

O

m-CPBA

AcO

 

AcO

OAc

 

OAc

CHCl3

AcO

(2.54)

AcO

NO2

 

 

 

NH2

 

 

 

 

 

 

85%

 

 

 

 

 

 

Tertiary amines have been oxidized to the corresponding nitro compounds with KMnO4. For example, 2-methyl-2-nitropropane is prepared in 84% yield from t-butylamine with KMnO4

(Eq. 2.55).117 In a similar fashion, 1-aminoadamantane has been oxidized to 1-nitroadamantane in 85% yield with KMnO4 (see Eq. 2.63).118

NH

KMnO4

NO2

 

2

 

 

(2.55)

 

 

 

 

 

83%

 

Recently, the oxidation of primary aliphatic amines to the corresponding nitro compounds has also been achieved using the catalyst system based on zirconium tetra tert-butoxide and

tert-butyl hydroperoxide in a molecular sieve (50–98% yield) (Eqs. 2.56 and 2.57 and Table 2.5).119

OEt

 

 

 

OEt

 

 

t-BuOOH

O2N

 

H2N

 

 

 

Zr(Ot-Bu)

OEt

(2.56)

OEt

4

70%

 

 

 

 

 

 

NH2

 

 

 

NO2

 

t-BuOOH

 

 

 

 

 

 

 

Zr(Ot-Bu)4

 

(2.57)

 

 

 

 

80%

 

2.2.2 Oxidation of Oximes

Conversion of carbonyl to nitro groups (retro Nef Reaction) is an important method for the

preparation of nitro compounds. Such conversion is generally effected via oximes using strong oxidants such as CF3CO3H.120

Anhydrous peroxytrifluoroacetic acid is not easy to handle, but the procedure has recently been revised.121 Namely, reaction of urea-hydrogen peroxide complex (UHP) with trifluoroacetic anhydride in acetonitrile at 0 °C gives solutions of peroxytrifluoroacetic acid, which oxidize aldoximes to nitroalkanes in good yields (Eqs. 2.58 and 2.59). Ketoximes fail to react under these conditions, the parent ketone being recovered.

Various convenient methods for the oxidation of oximes to nitro compounds have been developed in recent years. Olah has reported a convenient oxidation of oximes to nitro compounds with sodium perborate in glacial acetic acid (Eq. 2.60).122

22 PREPARATION OF NITRO COMPOUNDS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOH

 

 

 

 

 

 

 

NO2

 

 

 

 

 

UHP(CF3CO)2O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O O

(2.58)

 

 

 

 

 

 

 

 

 

 

 

 

O O

 

 

 

 

CH3CN, 0 ºC, 4 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

75%

 

 

 

 

 

 

 

 

 

NOH

UHP(CF3CO)2O

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3CN, 0 ºC, 5 h

 

 

MeO

(2.59)

MeO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(UHP: ureaH2O2)

 

 

 

 

 

65%

 

 

 

 

 

NOH

 

 

NaBO34H2O

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.60)

 

 

 

 

 

AcOH, 55–65 ºC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

65%

The conversion of oximes to nitroalkanes has been achieved by employing an Mo(IV) oxodiperoxo complex as oxidant in acetonitrile. Both aldoximes and ketoximes are converted into the corresponding nitroalkanes (Eqs. 2.61 and 2.62),123 representing a complementary synthetic route to the use of the UHP method.

Table 2.5 Conversion of amines to nitro compounds

Amine

 

Condition

Nitro compound

Yield (%)

Ref

 

 

 

 

 

 

NH2

O

, SiO , –78 °C

NO2

69

108

 

3

2

 

 

 

 

 

O O, acetone, RT,

 

95

111

 

30 min

 

 

 

 

CrS2, TBHP, MeOH,

 

85

110

 

 

65 °C, 5 h

 

 

 

NH2

CH2NH2

n-C4H9NH2

t-C4H9NH2

m-CPBA,

75

115

CICH2CH2Cl, 83 °C, 3 h

TBHP, Zr(Ot-Bu)4

m-CPBA, ClCH2CH2Cl, 83 °C, 3 h

O3, SiO2, –78 °C

O O, acetone, RT O3, SiO2, –78 °C CrS2, TBHP

NO2

82

119

92

110

 

 

12

108

 

97

111

CH2NO2

66

108

 

0

109

CH=NOH

76

O3, SiO2, –78 °C

n-C4H9NO2

65

108

O O, acetone, RT

 

84

111

m-CPBA,

 

63

115

ClCH2CH2Cl,

 

 

 

83 °C, 3 h

 

 

 

KMnO4

t-C4H9NO2

83

117

O O, acetone, RT

 

90

111

O3, SiO2, –78 °C

 

70

108

TBHP, Zr(Ot-Bu)4

 

64

119

2.2

SYNTHESIS OF NITRO COMPOUNDS BY OXIDATION 23

NOH

BzOMoO(O )

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 2

 

 

 

 

 

 

 

(2.61)

 

 

 

CH3CN, 40 ºC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

55%

 

 

NOH

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

BzOMoO(O2)2

 

 

 

 

 

 

 

(2.62)

 

 

 

CH3CN, 40 ºC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

92%

 

Oxidation of oximes to nitro compounds with m-CPBA has been applied to the synthesis of dialkyl 1-nitroalkanephosphonates (Eq. 2.63),124 which are useful reagents for conversion of carbonyl compounds to nitroalkenes.125

 

 

 

 

OH

 

 

 

 

NO2 O Oi-Pr

 

 

 

N O

Oi-Pr

m-CPBA

 

 

 

 

 

C2H5

CH

 

P

(2.63)

 

 

 

 

 

 

 

 

 

C2H5

 

C

 

P

Oi-Pr

CH2Cl2

 

65%

Oi-Pr

 

 

 

 

 

 

 

 

 

 

RT, 72 h

 

 

 

Indirect conversion of oximes to nitro compounds via α-halo nitro compounds has provided a useful method for synthesis of nitro compounds, as shown in Scheme 2.1.

Halogenation of oximes to halonitroso compounds has been achieved by a number of reagents, including chlorine,126 bromine,127 aqueous hypochlorous acid,126, t-butyl hypochlorite,37 and N-bromosuccinimide.128 The resulting halonitroso intermediate is then oxidized to halonitro product with nitric acid,128 ozone,129 aqueous sodium hypochlorite,130 or n-butyl- ammonium hypochlorite.37 The conversion of oximes to α-chloronitro compounds can be carried out by a one-flask operation. For example, 1-chloronitrocyclohexanone is prepared in 98% yield by treatment of cyclohexanone oxime with aqueous hypochlorous acid and by subsequent treatment with a mixture of tetra-n-butylammonium hydrogen sulfate and aqueous sodium hypochlorite. The reductive dechlorination of the α-chloronitro compounds is achieved by catalytic hydrogenolysis with 1 atm H2 over 5% Pd/C in methanol-water (4:1). The final step can be replaced by treatment with either Mg or Zn dust (Eq. 2.64).37

 

OH

 

 

Cl NO2

 

 

 

 

NO2

 

 

 

 

 

 

N

 

n-Bu4NHSO4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HClO, pH 5.5

 

 

 

 

 

H2/ Pd-C

 

 

 

 

 

 

 

 

benzene

 

NaClO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

98%

93%

 

 

 

 

 

 

(2.64) The one-pot conversions of oximes to gem-halonitro compounds have been achieved by using N,N,N,-trihalo-1,3,5-triazines,131 chloroperoxidase in the presence of hydrogen peroxide and potassium chloride,132 or commercial OXONE and sodium chloride.133 Of these methods,

the case of OXONE may be the most convenient (Eq. 2.65).

 

 

 

 

 

 

 

 

 

NOH

 

OXONE, NaCl

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHCl3, 45 ºC, 1 h

 

 

 

 

 

 

 

 

(2.65)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

83%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

NOH

 

 

 

Cl

NO

 

 

Cl

 

NO2

 

H

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

R1 R2

 

 

R1 R2

 

 

 

R1

R2

 

R1

 

R2

R1

R2

Scheme 2.1.

24 PREPARATION OF NITRO COMPOUNDS

Table 2.6 Preparation of polycyclic nitro compounds from oximes

Oxime

 

 

 

 

 

 

 

Condition

 

Nitro compound

Yield (%)

Ref.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOH

1) Br , NaHCO

3

aq

 

 

 

 

O2N

17

134

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(CF3CO)2O, H2O2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOH

2) NaBH4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) NBS,

 

 

 

 

 

 

 

 

 

 

 

16

141

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dioxane/H2O

 

O2N

 

 

 

 

 

 

 

 

 

O2N

 

 

 

 

 

 

 

CO2CH3

 

 

 

 

 

 

 

CO2CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) O3, CH2Cl2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOH

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOH

1) Na/NH3, MeOH

 

 

 

H

 

NO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) m-CPBA,

 

 

 

 

 

 

 

2

13

126

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOH

ClCH2CH2Cl

 

 

 

 

H NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HO

 

 

 

N

H2NCONH2,

 

 

 

 

 

 

 

 

 

NO2

 

 

N

 

 

 

 

 

 

 

O2N

 

 

 

 

 

 

 

 

 

 

 

Na2HPO4 m-CPBA,

 

 

 

 

95

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MeCN,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Energetically rich polynitro compounds have been prepared from polycyclic ketones by the conversion of oximes to nitro compounds, as shown in Table 2.6.

The conversion of oximes to nitro compounds have provided a useful method for the preparation of nitro sugars (see Eqs. 2.66–2.69).36,136,137,138

PhCO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PhCO2

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

(CF3CO)2O, H2O2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HON

 

 

 

 

 

 

 

 

 

 

 

 

CH3CN

 

 

 

 

 

 

 

 

 

 

 

 

O

(2.66)

 

 

 

OO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O2N

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90%

 

 

 

 

 

Ph3CO

 

 

 

 

 

 

 

 

 

 

 

 

 

O2N

 

 

 

 

 

 

CHO

 

 

Ph3CO

 

 

 

O

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.67)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O3, CH2Cl2

 

 

 

 

 

 

 

 

O

O

 

 

 

 

 

 

 

O O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90%

 

 

 

 

 

RCO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RCO2

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH OO

 

 

 

 

 

1) pyridine, Cr2O7

 

 

 

 

 

 

 

 

 

 

O

O

 

 

(2.68)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) H

NOH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3) H2O2, CH3CN

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

98%

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

OH

 

1) pyridine, Cr2O7

 

 

 

 

 

 

 

NO2

 

 

 

 

(2.69)

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

2) H2NOH

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

3) H2O2, CH3CN

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

95%

REFERENCES 25

In general, azides are more easily available than nitro compounds by SN2 reaction of the corresponding halides. Thus, the direct conversion of an azide into a nitro group is useful for the synthesis of nitro compounds. Corey and coworkers have reported the easy conversion of azides to nitro compounds via ozonolysis of phosphine imines (Eq. 2.70).139

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

O

 

 

 

 

O

 

X = I

NaN3

 

X = N3

Ph3P

 

 

O

 

 

 

 

 

 

DMF

(2.70)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OCH2CCl3

 

 

 

 

 

 

N

 

 

 

 

 

 

O

 

 

O

 

O3

 

 

 

 

 

 

 

 

 

 

 

 

X = NO2

 

 

 

 

 

 

 

 

 

 

X = N=PPh3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50% (overall)

The standard reaction sequence for transformation of a carboxylic acid into a nitro group is lengthy. Eaton has shortened this conversion via oxidation of isocyanates to nitro compounds with dimethyldioxirane in wet acetone (Eq. 2.71).140

 

 

 

 

CO2H

 

1) SOCl2

 

 

 

 

 

CON3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) Me3SiN3

 

 

 

 

 

 

 

 

HO2C

N3OC

 

 

 

 

 

 

 

 

 

 

 

NCO

O O

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OCN

 

 

 

 

 

H2O, acetone

O2N

(2.71)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

78%

 

 

 

 

 

 

85%

REFERENCES

1.Olah, G. A., R. Malhotra, and S. C. Narang. Nitration: Methods and Mechanism, VCH, New York, 1989.

2.Schofield, K. Aromatic Nitrations, Cambridge University Press, Cambridge, 1980.

3a. Laszlo, P. Preparative Chemistry Using Supported Reagents, Academic Press, London, 1987. 3b. Smith, K. Solid Supports and Catalysts in Organic Synthesis, Ellis Horwood, Chichester, 1992. 3c. Clark, J. H., and D. J. Macquarrie. Chem. Soc. Rev., 25, 3445 (1996).

4.Olah, G. A., R. Malhotra, and S. C. Narang. J. Org. Chem., 43, 4628 (1978).

5.Harmer, M. A., W. E. Farneth, and Q. Sun. J. Am. Chem. Soc., 118, 7708 (1996).

6.Laszlo, P., and J. Vandormael. Chem. Lett., 1843 (1988).

7.Cornelis, A., A. Gerstmans, and P. Laszlo. Chem. Lett., 1839 (1988).

8.Thomas, R. J., and R. G. Pews. Syn. Commun., 23, 505 (1993).

9.Kwok, T. J., K. Jayasuriya, R. Damavaparu, and B. W. Brodmanj. J. Org. Chem., 59, 4939 (1994).

10.Bekassy, S., T. Cseri, M. Horvath, J. Farkas, and F. Figueras. New. J. Chem., 22, 339 (1998). 11a. Smith, K., A. Musson, and G. A. DeBoos. J. Org. Chem., 63, 8448 (1998).

11b. Smith, K., A. Musson, and G. A. DeBoos. Chem. Commun., 469 (1996).

12a. Waller, F. J., A. G. M. Barrett, D. C. Braddock, and D. Ramprasad. Chem. Commun., 613 (1997). 12b. Waller, F. J., A. G. M. Barrett, D. C. Braddock, R. M. McKinnell, and D. Ramprasad. J. Chem.

Soc., Perkin Trans 1, 867 (1999).

12c. Barrett, A. G. M., D. C. Braddock, R. Ducray, A. M. McKinnell, and F. G. Waller. Synlett., 57 (2000).

13.Waller, F. J., A. C. M. Barrett, D. C. Braddock, and D. Ramprasad. Tetrahedron Lett., 39, 1641 (1998).

14.Ouertani, M., P. Girard, and H. B. Kagan. Tetrahedron Lett, 23, 4315 (1982).

15.Gu, S. X., H. W. Jing, and Y. M. Liang. Synth. Commun., 27, 2793 (1997).

26PREPARATION OF NITRO COMPOUNDS

16.Dove, M. F. A., B. Manz, J. Montogomery, G. Pattenden, and S. A. Wood. J. Chem. Soc., Perkin Trans 1, 1589 (1998).

17.Zhang, W. C., Y. C. Zheng, and Z. T. Huang. Synth. Commun., 27, 3763 (1997).

18.Olah, G. A., P. Ramaiah, G. Sandford, A. Orlinkov, and G. K. S. Prakash. Synthesis, 468 (1994).

19.Fisher, J. W. The Chemistry of Dinitrogen Pentoxide in Nitro Compoundsed. by H. Feuer and A. T. Nielsen, VCH, New York, 1990.

20.Freemantle, M. Chem. Eng. News, 7 (1996).

21.Bakke, J. M., and I. Hegbom. Acta. Chem. Scand., 48, 181 (1994).

22a. Bakke, J. M., and E. Ranes. Synthesis, 281 (1997).

22b. Suzuki, H., M. Iwaya, and T. Mori, Tetrahedron Lett., 38, 5647 (1997).

22c. Bakke, J. M., E. Ranes, and J. Riha. Tetrahedron Lett., 39, 911 (1998). 23. Mori, T., and H. Suzuki. Synlett, 383 (1995).

24a. Suzuki, H., and T. Murashima. J. Chem. Soc., Perkin Trans 1, 903 (1994).

24b. Suzuki, H., T. Murashima, and T. Mori. J. Chem. Soc. Chem. Commun., 1443 (1994).

24c. Suzuki, H., T. Ishibashi, T. Murashima, and K.Tsukamoto. Tetrahedron Lett., 32, 6591 (1991). 24d. Suzuki, H., J. Tomaru, and T. Murashima. J. Chem. Soc. Perkin Trans 1, 2413 (1994).

24e. Suzuki, H., A. Tatsumi , T. Shibasaki, and K. Tsukamoto. J. Chem. Soc. Perkin Trans 1, 339 (1995). 24f. Suzuki, H., T. Takeuchi, and T. Mori. J. Org. Chem., 61, 5944 (1996).

25.Suzuki, H., T. Mori, and K. Maeda. Synthesis, 841 (1994).

26.Enya, T., H. Suzuki, and Y. Hisamatsu. Bull. Chem. Soc. Jpn., 71, 2221 (1998).

27.Suzuki, H., and T. Mori. J. Chem. Soc., Perkin Trans 2, 677 (1996).

28.Njoroge, F. G., B. Vibulbhan, P. Pinto, T. M. Chan, R. Osterman, S. Remiszewski, J. Del Rosario, R. Doll, V. Girijavallabhan, and A. K. Ganguly. J. Org. Chem., 63, 445 (1998).

29.Firouzabadi, H., N. Iranpoor, and M. A. Zolfigol. Synth. Commun., 27, 3301 (1997).

30.Pitts, J. N., K. A. Van Cauwenberghe, D. Grosjean, J. P. Schmid, D. R. Fritz, W. L. Belser, G. B. Kunsdon, and P. M. Hynds. Science, 202, 515 (1978).

31.Tani, K., K. Lukin, and P. E. Eaton. J. Am. Chem. Soc., 1997, 119, 1476.

32.Olah, G. A., and C. H. Lin. J. Am. Chem. Soc., 93, 1259 (1971).

33.Olah, G. A., P. Ramaish, C. B. Rao, G. Sandfold, R. Golam, N. J. Trivedi, and J. A. Olah. J. Am. Chem. Soc., 115, 7246 (1993).

34.Tabushi, I., S. Kojo, and Z. Yoshida. Chem. Lett., 1431 (1971).

35.Suzuki, H., and N. Nonomiya. Chem. Commun., 1783 (1996).

36.Olah, G. A., and C. Rochin. J. Org. Chem., 52, 701 (1987).

37.Corey, E. J., and H. Estreicher. Tetrahedron Lett., 21, 1113 (1980).

38a. Larsen, H. O. In the Chemistry of the Nitro and Nitroso Groups, Part 1, ed. by H. Feuer, Interscience, New York, p. 310 (1969).

38b. von Schickh, O., H. J. Padeken, and A. Segnitz. In Houben-Weyl: Methoden der Organischen Chemie, Vol.10/1 ed. by E. Mulleer, George Thieme Verlag, Stutttgart, 1969, p, 310.

38c. Coomers, R. G. In Comprehensive Organic Chemistry, Vol. 2 ed. by I. O. Sutherland, Pergamon Press, Oxford, p. 326 (1979).

38d. Feuer, H. The Chemistry of Amino, Nitroso and Nitro Compounds and Their Derivatives, Supplemental F; . ed. by S. Patai, John Wiley and Sons; New York, 1982, p. 805–848.

39a. Feuer, H., and J. P. Lawrence. J. Org. Chem., 37, 3662 (1972). 39b. Feuer, H., and H. Friedman. J. Org. Chem., 40, 187 (1975).

40a. Feuer, H., J. W. Shepherd, and C. Savides. J. Am. Chem. Soc., 78, 4364 (1956). 40b. Feuer, H., and R. S. Anderson. J. Am. Chem. Soc., 78, 4364 (1961).

40c. Black, A. P., and F. H. Babers. Org. Synth. 2, 512 (1943).

41.Pfeffer, P.E., and L. S. Silbert. Tetrahedron Lett., 30, 831 (1981).

42.Hauser, F. M., and V. M. Baghdanov. J. Org. Chem., 53, 2872 (1988).

43a. Lukin, K., J. Li, R. Gilardi, and P. E. Eaton. Angew. Chem. Int. Ed. Engl., 35, 864 (1996). 43b. Zang, M. X., P. E. Eaton, and R. Gilardi. Angew. Chem. Int. Ed. Engl., 39, 401 (2000).

44.Haner, R., and D. Seebach. Chimia, 39, 356 (1985).

45.Megges, R., J. Weiland, B. Undeutsch, H. Buchting, and R. Schon. Steroids, 62, 762 (1997).

46.Bull, J. R., E. R. H. Jones, and G. D. Meakins. J. Chem. Soc., 2601 (1965).

47.Pfeiffer, S., B. Mayer, and B. Hemmens. Angew. Chem. Int. Ed. Engl., 38, 3714 (1999). 48a. Ischia, M. Tetrahedron Lett., 37, 5773 (1996).

REFERENCES 27

48b. Kelly, D. R., S. Jones, J. O. Adogun, K. S. V. Koh, D. E. Hibbs, M. B. Hurdthous, and S. K. Jackson . Tetrahedron, 53, 17221 (1997).

48c. Werner, G., J. Kastler, R. Looser, and K. Ballschmiter. Angew. Chem. Int. Ed,. Engl., 38, 1634 (1999). 49a. Larkin, J. M., and K. L. Kreuz. J. Org. Chem., 36, 2574 (1973).

49b. Lachowicz, D. R., and K. L. Kreuz. J. Org. Chem., 32, 3885 (1967).

49c. Stevens, T. E., and W. D. Emmons. J. Am. Chem. Soc., 80, 338 (1958).

49d. Shechter, H., F. Conrad, A. I. L. Daulton, and R. B. Kaplan. J. Am. Chem. Soc., 74, 3052 (1952). 49e. Bordwell, F. G., and E. W. Garbisch, Jr. J. Am. Chem. Soc., 82, 3588 (1960).

50.Borisenko, A. A. A., V. Nikulin, S. Wolfe, N. S. Zefirov, and Z. V. Zyk. J. Am Chem. Soc., 106, 1074 (1984).

51.McMurray, J. E., J. H. Musser, I. Fleming, J. Fortunak and C. Nubling. Org. Synth. Coll. 6, 799 (1988).

52.Seifert, W. K. Org. Synth. Coll. Vol. 6, 837 (1988).

53a. Mukaiyama, T., E. Hata, and T. Yamada. Chem. Lett., 1395 (1995).

53b. Hata, E., T. Yamada, and T. Mukaiyama. Bull. Chem. Soc. Jpn., 68, 3269 (1995).

54. Streekumar, R., R. Padmakumar, and P. Rugmini. Tetrahedron Lett., 39, 2695 (1998). 55a. Valmer, R. S., K. P. Naicker, and P. J. Liesen. Tetrahedron Lett., 39, 3977 (1998). 55b. Campos, P. J., B. Garcia, and M. A. Rodriguez. Tetrahedron Lett., 41, 979 (2000).

56.Hwu, J. R., K. L. Chen, and S. Ananthan. J. Chem. Soc. Chem. Commun., 1425 (1994).

57.Reddy, M. V. R., B. Mehrotra, and Y. D. Vankar. Tetrahedron Lett., 36, 4861 (1995). 58a. Schienbaum, M. L., and M. Dines. J. Org. Chem., 36, 33641 (1971).

58b. Bloom, A. J., M. Fleischman, and J. M. Mellor. J. Chem. Soc., Perkin Trans 1, 2357 (1984).

59.Kunai, A., Y. Yanagi, and K. Sasaki. Tetrahedron Lett., 24, 4443 (1983). 60a. Hassner, A., J. E. Krop, and J. Kent. J. Org. Chem., 34, 2629 (1969).

60b. Szarek, W. A., D. G. Lance, and R. E. Beach. J. Chem. Soc., Chem. Commun., 356 (1968).

61.Sy, W., and A. W. By. Tetrahedron Lett., 26, 1193 (1985).

62.Waldman, S. R., A. P. Monte, A. Bracey, and D. E. Nichols. Tetrahedron Lett., 37, 7889 (1996).

63.Jew, S. S., H. D. Kim, Y. S. Cho, and C. H. Cook. Chem. Lett., 1747 (1986).

64.Ghosh, D., and D. E. Nichols. Synthesis, 195 (1996).

65.Trost, B. M., and T. Shibata. J. Am. Chem. Soc., 104, 3225 (1982).

66a. Hayama, T., S. Tomoda, Y. Takeuchi, and Y. Nomura. Tetrahedron Lett., 23, 4733 (1982). 66b. Hayama, T., S. Tomoda, Y. Takeuchi, and Y. Nomura. J. Org. Chem., 49, 3235 (1984).

67.Backvall, J. E., U. Karlsson, and R. Chinchilla. Tetrahedron Lett., 32, 5697 (1991).

68.Chinchilla, R., and J. E. Backvall. Tetrahedron Lett., 33, 5641 (1992).

69.Najera, C., M. Ysu, U. Karlsson, A. Gogoll, and J. E. Backvall. Tetrahedron Lett., 31, 4199 (1990).

70.Bloom, A. J., and J. Mellor. Tetrahedron Lett., 27, 873 (1986). 71a. Corey, E. J., and H. Estreicher. Tetrahedron Lett., 21, 1113 (1980).

71b. Barrett, A. G. M., M. L. Boys, and T. L. Boehm. J. Org. Chem., 61, 685 (1996). 71c. Chamberlin, A. R., J. E. Stemke, and E. T. Bond. J. Org. Chem., 43, 147 (1978).

72.Einhorn, J., P. Demerseman, and R. Royer. Synthesis, 978 (1984).

73.Patil, G. S., and G. Nagendrappa. Chem. Commun., 1079 (1999).

74.Corey, E. J., and H. Estreicher. J. Am. Chem. Soc., 100, 6294 (1978).

75.Hewlins, S. A., J. A. Murphy, and J. Lin. J. Chem. Soc., Chem. Commun., 559 (1995). 76a. Bloom, A. J., M. Fleischmann, and J. M. Mellor. Tetrahedron Lett., 25, 4971 (1984).

76b. Bloom, A. J., M. Fleischmann, and J. M. Mellor. J. Chem. Soc., Perkin Trans 1, 79 (1986).

77.Jager, V., J. C. Mott, and H. G. Viehe. Chimica, 29, 516 (1975). 78a. Schmitt, R. J., and C. D. Bedford. Synthesis, 132 (1984).

78b. Schmitt, R. J., J. C. Bottaro, R. Malhotra, and C. D. Bedford. J. Org. Chem., 52, 2294 (1987).

79.Fisher, R. H., and H. M. Weitz. Synthesis, 261 (1980).

80a. Ozbal, H., and W. W. Zajac, Jr. J. Org. Chem., 46, 3082 (1981). 80b. Elfehali, F. E., and W. W. Zajac, Jr. J. Org. Chem., 46, 5151 (1981).

81.Feuer, H., and P. M. Pivawer. J. Org. Chem., 31, 3152 (1966).

82.Dampawan, P., and W. W. Zajac, Jr. J. Org. Chem., 47, 1176 (1982).

83.Dampawan, P., and W. W. Zajac, Jr. Synthesis, 545 (1983).

84.Rathore, R., and J. K. Kochi. J. Org. Chem., 61, 627 (1996).

85.Liang, P. Org. Synth., 3, 803 (1955).

28 PREPARATION OF NITRO COMPOUNDS

86a. Reddy, M. V. R., R. Kumareswaran, and Y. D. Vankar. Tetrahedron Lett., 36, 7149 (1995).

86b. Shahi, S.P., A. Gupta, S. V. Pitre, M. V. R. Reddy, R. Kumareswaran, and Y. D. Vankar. J. Org. Chem., 64, 4509 (1999).

87.Stach, H., and M. Hesse. Tetrahedron, 44, 1573 (1988).

88.Ballini, R. Synlett, 1009 (1999).

89a. Ballini, R., and C. Pslestini. Tetrahedron, 35, 5731 (1994).

89b. Dampawan, P., and W. W. Zajac Jr. Tetrahedron Lett., 23, 135 (1982).

90.Ballini, R., and M. Petrini. Synthetic Commun., 16, 1781 (1986).

91.Ballini, R., M. Petrini, and V. Polzonetti. Synthesis, 335 (1992). 92a. Kornblum, N. Org. React., 12, 101 (1962).

92b. Feuer, H., and G. Leston. Org. Synth., Coll. Vol. 4, 368 (1963).

92c. Kornblum, N., and H. E. Ungnade. Org. Synth., Coll. Vol. 4, 724 (1963). 92d. Kornblum, N., and R. K. Blackwood. Org. Synth., Coll. Vol. 4, 454 (1963). 92e. Kornblum, N., and J. W. Powers. J. Org. Chem., 22, 455(1957).

93.Kornblum, N., and W. M. Weaver. J. Am. Chem. Soc., 80, 4333 (1958).

94.Childs, M. E., and W. P. Weber. J. Org. Chem., 41, 3486 (1976).

95.Gelbard, G., and S. Colonna. Synthesis, 113 (1972).

96.Crumbie, R. L., J. S. Nmitz, and H. S. Mosher. J. Org. Chem., 47, 4040 (1982).

97.Wang, C-Y-S., M. Kuramoto, and D. Uemura. Tetrahedron Lett., 37, 1813 (1996).

98.Blake, A. J., E. C. Boyd, R. O. Gould, and R. M. Paton. J. Chem. Soc. Perkin Trans 1, 2841 (1994).

99.Mateos, A. F., G. P. Coca, R. R. Gozalez, and C. T. Herandez. J. Org. Chem., 61, 9097 (1996).

100.Evans, D. A., D. H. B. Ripin, D. Halstead, and K. R. Campos. J. Am. Chem. Soc., 121, 6816 (1999).

101.Grossman, R. B., R. H. Rasne, and B. O. Patrick. J. Org. Chem., 64, 7173 (1999).

102.Fumoto, Y., T. Eguichi, H. Uno, and N. Ono. J. Org. Chem., 64, 6518 (1999).

103.Ballini, R., G. Bisica, and G. Rafaiani. Helv. Chim. Acta, 78, 879 (1995).

104.Sekine, A., N. Kumagai, K. Uotsu, T. Oshima, and M. Shibasaki. Tetrahedron Lett., 41, 509 (2000).

105.Miyakoshi, T., S. Saito, and J. Kumanotani. Chem. Lett., 1677 (1981).

106.Schneider, H. J., and R. Busch. Angew. Chem. Int. Ed. Engl., 23, 911 (1984).

107.Bailey, P. S., and J. E. Keller. J. Org. Chem. 33, 2680 (1968).

108.Keinan, E., and Y. Mazur. J. Org Chem. 42, 844 (1977).

109.Zajac, W. W., Jr., T. R. Walters, and J. M. Woods. J. Org. Chem., 54, 2468 (1989).

110.Jayachandran, B., M. Sasidharan, A. Sudalai, and T. Ravindranathan. J. Chem. Soc., Chem. Commun., 1523 (1995).

111.Murray, R. W., R. Jeyaraman, and L. Mohan. Tetrahedron Lett., 27, 2335 (1986).

112.Murray, R. W., and R. Jeyaraman. J. Org. Chem., 50, 2847 (1985).

113.Zbrowksi, D. L., A. E. Moorman, and K. R. Beck, Jr. Tetrahedron Lett., 29, 4501 (1988).

114.Emmons, W. D. J. Am. Chem. Soc., 79, 5528 (1957).

115.Gilbert, K. E., and W. T. Borden. J. Org. Chem., 44, 659 (1973).

116.Vega-Perez, J. M., J. I. Candela, and F. Iglesias-Guerra. J. Org. Chem., 62, 6606 (1997).

117.Calder, A., A. R Forrester, and S. P. Hepburn. Org. Synth., Coll. Vol. 6, 803 (1988).

118.Stetter, H., and E. Smulders. Chem. Ber., 104, 917 (1971).

119.Krohn, K., and J. Kupke. Eur. J. Org. Chem., 679 (1998).

120.Emmons, W. D., and A. S. Psgano. J. Am. Chem. Soc., 77, 4557 (1955).

121.Ballini, R., E. Marcantoni, and M. Petrini. Tetrahedron Lett., 33, 4835 (1992).

122.Olah, G. A., P. Ramaiah, C. S. Lee, and G. K. S. Prakash. Synlett., 337 (1992).

123.Ballistreri, F. P., E. Barbuzzi, G. A. Tomaselli, and R. M. Toscano. Synlett, 1093 (1996).

124.Zon, J. Synthesis, 661 (1984).

125.Fujii, M. Chem. Lett., 933 (1992).

126.Archibald, T. G., L. C. Garvier, K. Baum, and M. C. Cohen. J. Org. Chem., 54, 2869 (1989).

127.Marchand, A. P., B. E. Arney, Jr., and P. R. Dave. J. Org. Chem., 53, 443 (1988).

128.Iffland, D. C., and G. X. Criner. J. Am. Chem. Soc., 27, 1933 (1962).

129.Barnes, M. W., and J. M. Patterson. J. Org. Chem., 41, 733 (1976).

130.Baum, K., and T. G. Archibald. J. Org. Chem., 53, 4645 (1988).

131.Walters, T. R., W. W. Zajac, Jr., and J. M. Woods. J. Org. Chem., 57, 316 (1992).

132.Zaks, A., A. V. Yabannavar, D. R. Dodds, C. A. Evans, P. R. Das, and R. Malchow. J. Org. Chem., 61, 8692 (1996).

Соседние файлы в предмете Химия