Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

The Nitro group in organic sysnthesis - Feuer

.pdf
Скачиваний:
82
Добавлен:
15.08.2013
Размер:
4.7 Mб
Скачать

3.2 DERIVATIVES FROM β-NITRO ALCOHOLS 39

discussed in Chapters 4 and 8. Some typical nitroalkenes which are useful reagents in organic synthesis are presented here.42

Nitroethylene: Dehydration of 2-nitroethanol44 using phthalic anhydride (80%) is the best choice of preparation;43 bp 38–39 °C/80 mm Hg.

1-Nitro-1-propene: Preparation is accomplished by dehydration of 2-nitro-1- propanol with phthalic anhydride (73%)45 or acetic anhydride-AcONa46; bp 56–57

°C/80 mmHg.

2-Nitro-1-propene: Preparation is accomplished by dehydration of 1-nitro-2- propanol with methanesulfonyl chloride and triethylamine (30% yield),47 acetic anhydride-AcONa (85% yield),46 or phthalic anhydride (55%)45; bp 58 °C/35

mmHg (Eq. 3.25).

 

 

 

 

 

O

 

 

 

 

O2N R

 

 

 

O

O2N

 

R R = H (80%)

 

 

 

 

 

 

 

 

O

 

(3.25)

 

 

 

 

 

 

 

 

140–180 ºC

 

 

R = Me (73%)

 

HO

 

 

 

 

 

80 mmHg

 

 

 

 

 

 

 

 

 

 

Dehydration of β-nitro alcohols is generally carried out by the following reagents, phthalic

anhydride,44 CH3SO2Cl-Et3N,47 dicyclohexylcarbodiimide (DCC),48 Ac2O-AcONa, Ph3P- CCl4,49 and TFAA-Et3N,50 as exemplified in Eqs. 3.2648 and 3.2747b.

n-C H

9

 

 

 

 

DCC, CuCl

 

n-C4H9

 

 

4

 

 

NO

 

 

 

 

 

NO2

(3.26)

 

 

 

 

2

 

35 ºC, 10 h

 

 

 

 

 

 

 

 

OH

 

90%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PhO

 

NO2

PhO

 

 

 

 

CHO

 

 

 

 

 

 

 

 

 

1) CH3NO2, Et3N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) MeSO2Cl, Et3N

 

 

N

 

(3.27)

 

 

 

 

N

 

 

 

 

 

O

An

 

O

 

 

 

 

An

 

 

 

 

 

 

 

 

 

 

 

85%

 

 

 

 

 

 

 

 

 

 

 

Dehydration of β-nitro alcohols using DCC gives a mixture of E/Z nitroalkenes.48 The pure (E)-isomers are obtained on treatment with catalytic amounts of triethylamine or polymer-bound triphenylphosphine (TPP) (Eq. 3.28).51 When (Z) nitroalkenes are desired, the addition of PhSeNa to the E/Z mixture and protonation at –78 °C followed by oxidation with H2O2 gives (Z)-nitroalkenes (Eq. 3.29).52

 

n-C3H7

Me

 

 

 

 

n-C3H7 Me

 

 

 

 

 

 

 

 

 

NO2

 

TPP

 

 

 

 

NO2

 

 

(3.28)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 h

 

 

 

 

 

 

 

 

 

 

E/Z = 55/45

 

 

 

 

100% (E/Z = 100/0)

 

 

 

 

Me

 

 

Me

 

 

 

 

 

 

Me

NO2

 

Me

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PhSeNa

 

 

Me

 

H2O2

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

AcOH

 

SePh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–78 ºC

70 % (anti/syn = 91/9)

 

99% (Z/E = 90/10)

 

 

 

 

 

 

 

 

 

 

 

(3.29)

40 THE NITRO-ALDOL (HENRY) REACTION

Al2O3 can be used both as a base for the Henry reaction and as a dehydrating agent. Thus, nitroalkenes are simply prepared by mixing of aldehydes and nitroalkanes with Al2O3 and subsequent warming at 40 °C (Eq. 3.30).53

 

 

+ CH3CH2NO2

Al2O3

 

 

NO2

 

 

 

 

 

 

 

 

 

CHO

 

 

 

(3.30)

 

40 ºC, 44 h

 

 

O

 

 

O

 

Me

 

 

 

 

In general, base-catalyzed reactions of aromatic aldehydes with nitroalkanes give nitroalkenes directly (Knoevenagel reaction).54 The reaction is very simple; heating a mixture of aromatic aldehydes, nitroalkanes, and amines in benzene or toluene for several

hours using a Dean-Stark water separator gives the desired nitroalkenes in good yield, as shown in Eqs. 3.31–3.34.54–58

 

 

 

 

 

NO2

 

CHO

+

CH3CH2NO2

C4H9NH2

 

Me

(3.31)

 

toluene

 

 

OMe

 

OMe

 

 

reflux

 

 

 

 

 

80–90%

 

 

 

 

 

 

MeO

 

 

 

 

OMe

 

 

 

 

 

 

 

CHO

 

CH3CO2NH4

 

NO2

+ CH3CH2NO2

 

 

 

MeO

 

 

 

MeO

 

Me

 

 

 

 

65%

(3.32)

 

 

 

 

 

 

 

 

 

 

 

CH2NO2

+

C4H9NH2

 

(3.33)

CHO

 

 

 

 

 

 

O2N

 

 

 

 

 

 

65%

 

Br

 

 

 

 

 

 

+

 

NO2

CH3CO2NH4

 

 

 

 

 

 

Br

 

Br

CHO

 

NO2

CH3CO2H

 

 

 

 

 

O2N

NO2

(3.34)

 

 

 

 

82%

 

Instead of using the Dean-Stark apparatus, the reaction can be carried out at reflux using MeNH3Cl/AcOK/MeOH with HC(OMe)3 as a water scavenger. A wide variety of nitroalkenes can be prepared in good yields by this method (Eq. 3.35).59

 

 

MeO

NO2

MeO

MeO

CHO MeNH3Cl, AcOK

OMe

+

 

BzO

 

NO2

BzO

HC(OMe)3

 

BzO

MeOH, reflux

OBz

 

 

 

 

 

77%

(3.35)

In recent years, there has been a considerable growth of interest in the catalysis of organic reactions by inorganic reagents supported on high surface areas.60 Envirocat, a new family of supported reagents, which exhibits both Brönstead and Lewis acid character, are ideal for environmentally friendly chemistry. These reagents are non-toxic powders that can be easily

3.2 DERIVATIVES FROM β-NITRO ALCOHOLS 41

filtered from the reaction mixture and may be reused.61 With the use of this new heterogeneous catalyst, nitroolefins are prepared directly by heating a mixture of aldehyde and nitroalkane at 100 °C in the absence of solvents (Eq. 3.36).

 

 

Envirocat EPZG

Me

CHO

+

 

 

NO2

NO2 (3.36)

 

 

100 ºC, 20 min

 

 

 

95%

Application of ultrasound62 or microwave irradiation63 greatly assists these condensation reactions as shown in Eqs. 3.37 and 3.38, respectively, rendering the use of a Dean-Stark apparatus unnecessary.

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Condition

 

Yield (%)

 

MeO

 

 

CHO

+

CH3NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH4OAc/ AcOH

35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100 ºC, 3 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MeO

 

 

 

 

 

 

NO2 NH4OAc/ AcOH

99

(3.37)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22 ºC, 3 h, ))))

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

N

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

CH3CH2NO2

 

H

 

 

 

 

 

(3.38)

 

 

 

CHO

Microwave

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

400 W

64%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 min

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reactions of methyl nitroacetate with aldehydes are induced by TiCl4 in pyridine. They afford

nitroalkenyl-esters,64 which are used in the preparation of various nonnatural amino acids (Eq. 3.39).65

CHO

 

 

 

 

 

 

 

 

 

NO2

 

 

TiCl4

 

 

 

 

CO2Me

+ O2N

CO2Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

O N Me

 

 

N

(3.39)

Me

 

 

 

 

 

 

 

Me

 

THF, 0–25 ºC

 

 

 

 

 

 

 

 

75%

 

 

 

 

 

 

 

 

Nitroalkenes prepared from aromatic aldehydes are especially useful for natural product synthesis. For example, the products are directly converted into ketones via the Nef reaction (Section 6.1) or indoles (Section 10.2) via the reduction to phenylethylamines (Section 6.3.2). The application of these transformations are discussed later; here, some examples are presented to emphasize their utility. Schemes 3.3 and 3.4 present a synthesis of 5,6-dihydroxyindole66 and asperidophytine indole alkaloid,67 respectively.

Seebach and coworkers have developed the multiple coupling reagent, 2-nitro-2-propenyl 2,2-dimethylpropanoate (NPP). The reaction of nitromethane with formaldehyde gives 1,3- dihydroxy-2-nitropropane in 95% yield. Subsequent acylation with two equivalents of pivaloyl chloride and elimination of pivalic acid affords NPP. The reaction may be run on a 40to 200-g

42

HO

HO

MeO

MeO

 

THE NITRO-ALDOL (HENRY) REACTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHO

 

 

 

 

 

 

 

 

 

 

 

 

 

HO

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C(NO2)4, ZnSO4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH4OAc-AcOH

HO

95%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EtOH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HO

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Na2S2O4, ZnSO4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HO

 

 

NO2

 

 

 

 

 

pH 4

 

 

 

 

 

 

 

 

 

HO

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

52%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3.3. Synthesis of 5,6-dihydroxyindole

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2 1) Fe, AcOH, silica gel,

 

 

 

 

 

 

 

 

 

 

 

1) POCl

 

, DMF, 35 ºC,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

toluene,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MeO

 

 

 

 

N

 

1 h, then NaOH aq

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

2) MeI, KOH, Bu4NI,

 

 

 

 

 

 

 

Me

 

2) MeNO2, NH4OAc,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THF, 23 ºC

 

 

 

 

OMe

 

 

 

 

, 1 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

67%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH2

 

 

 

 

 

 

 

 

 

 

CHO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OHC

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LiAlH4, THF, , 1 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SiMe3

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

MeO

 

 

 

 

N

 

 

 

MeCN, 23 ºC, then TFA,

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

0 ºC, then NaBH3CN,

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23 ºC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

91%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

88%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N H

 

 

Oi-Pr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MeO

 

 

N H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MeO

 

 

 

 

 

 

 

 

 

N H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMe

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMe

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

66%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aspidophytine

 

 

Scheme 3.4. Synthesis of aspidophytine

scale without problems (Eq. 3.40).68 NPP allows successive introduction of two different nucleophiles Nu1 and Nu2 as shown in Eq. 3.41. The conversion of the resulting products via the Nef reaction or reduction into various compounds, makes NPP a useful reagent for convergent syntheses, as demonstrated in Eqs. 3.42 and 3.43.

CH NO

 

NO

2

 

 

 

 

 

 

NO2

3 2

1) MeONa/MeOH

 

 

 

 

t-BuCOCl

t-Bu O

 

O t-Bu

+

 

HO

 

 

OH

 

 

 

 

 

 

 

 

 

HCHO

2) Salicylic acid

 

 

 

 

 

 

 

 

 

 

75%

 

 

NO2

 

O

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AcONa

 

 

 

O

t-Bu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

(3.40)

NPP

45%

 

 

 

 

3.2 DERIVATIVES FROM β-NITRO ALCOHOLS 43

 

 

 

 

 

 

 

O

 

 

 

NO2

 

Nef

Nu

1

Nu

2

 

Nu1

Nu2

NO2

 

 

NPP

 

 

 

(3.41)

 

Nu1

Nu1

Nu2

 

 

NH2

 

 

 

 

 

Reduction

 

 

 

 

 

 

 

Nu1

Nu2

 

 

 

 

NO2

 

 

 

 

 

Li

 

 

OEt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NPP

OLi

 

 

 

 

 

 

THF, –70 °C

THF, –70 °C

 

 

 

 

 

 

NO2

88%

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

N

(3.42)

 

 

 

 

 

 

 

 

 

OEt

H2/Ni

H

 

 

 

 

 

Et2O-EtOH

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

66%

82%

 

 

 

 

 

 

 

OLi

O

 

 

 

 

 

 

NO2

 

 

 

 

 

NPP

 

 

 

 

 

 

n-C4H9Li

 

 

 

 

 

 

 

THF, –70

°C

 

THF, –70 °C

 

 

NO2

 

 

 

 

 

 

 

 

 

77%

 

 

 

 

 

 

 

O

75%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) MeONa/ MeOH

 

 

 

 

 

(3.43)

 

2) H2SO4

 

O

 

 

 

 

 

 

 

 

78%

 

 

 

 

Chiral multiple-coupling reagents have been prepared in enantiomerically pure form by enantio-selective saponification of diesters of meso-2-nitrocyclohexane-1,3-diols (Eq. 3.44) with pig liver esterase (PLE).69

 

NO2

 

 

NO2

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

HO

 

OAc

 

t-Bu

 

O

 

 

 

 

AcO

 

OAc

PLE

 

1) Piv2O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) MeOH/H+

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90% (95% ee)

3) DCC/CuCl

 

67%

(3.44)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The nitro-aldol reaction followed by dehydration gives 2-nitro-1,3-dienes, which are useful reagents for cycloaddition (Eq. 3.45).70

 

CH3NO2

OH

 

 

 

O

OTHP

 

 

 

 

 

 

NO2

 

 

 

 

NO2

O

MeONa

 

H+

 

1) HCHO, MeONa

 

 

 

O

 

(3.45)

 

 

 

 

 

 

 

 

 

 

 

O

 

 

Ph

heat

 

 

 

 

2) PhCOCl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

65% (overall)

 

 

 

 

 

 

 

 

44 THE NITRO-ALDOL (HENRY) REACTION

The nitro-aldol approach is impractical for the synthesis of 2,2-disubstituted 1-nitroalkenes due to the reversibility of the reaction when ketones are employed as substrates. Addition-elimination reactions are used for the preparation of such nitroalkenes (see Chapter 4).

3.2.2 Nitroalkanes

Reduction of nitroalkenes with NaBH4 has been widely used for the synthesis of nitroalkanes.71 In some cases, however, small amounts of dimeric products are also formed, although their formation can be completely suppressed using acidic conditions.72 Silica gel is also effective in preventing the dimerization of nitrostyrenes. 2-Aryl-1-nitroethanes are obtained in near quantitative yields by the reduction with NaBH4.73 This route provides a simple route to phenylethylamines of biochemical and pharmacological interest.74 A simple and efficient method for the large-scale preparation of phenylnitroethanes has been reported, in which solutions of nitrostyrenes in 1,4-dioxane are added to an efficiently stirred suspension of NaBH4 in a mixture of 1,4-dioxane and ethanol (Eq. 3.46).75 Hydrogenation of nitrostyrene derivatives with bis(triphenylphosphine)rhodium chloride (Wilkinson catalyst) gives also good yields of products.76

NO2

1) NaBH4, dioxane-EtOH

 

 

NO2

30 ºC, 1.5 h

 

 

 

(3.46)

 

2) AcOH

 

 

 

95%

 

 

 

The reduction of nitroalkenes with ZnBH4 in 1,2-dimethoxyethane (DME) gives the corresponding oximes or nitroalkanes depending on the structure of nitroalkenes. α-Substituted nitroalkenes are reduced to the oximes, whereas those having no α-substituents afford the nitroalkanes (Eq. 3.47).77

MeO

NO2

MeO

NO2

ZnBH4

 

 

 

 

DME

MeO

(3.47)

 

MeO

86%

Very selective reduction of nitroalkenes into the corresponding nitroalkanes is achieved using NaCNBH3 in the presence of the zeolite H-ZSM 5 in methanol (Eq. 3.48).78

O

 

 

 

O

 

 

 

 

 

NaCNBH3

 

 

 

 

(3.48)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zeolite H-ZSM5

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

NO2

 

 

 

 

 

 

 

70%

 

 

 

 

 

 

 

Nitromethylation of aldehydes has been carried out in a one pot procedure consisting of the Henry reaction, acetylation, and reduction with sodium borohydride, which provides a good method for the preparation of 1-nitroalkanes.16b,79 It has been improved by several modifications. The initial condensation reaction is accelerated by use of KF and 18-crown-6 in isopropanol. Acetylation is effected with acetic anhydride at 25 °C and 4-dimethylaminopyridine (DMAP) as a catalyst. These mild conditions are compatible with various functional groups which are often

3.2 DERIVATIVES FROM β-NITRO ALCOHOLS 45

present in the synthesis of natural products.16b Readily available methyl 6-oxohexanoate has been converted into methyl 7-oxoheptanoate via nitromethylation and subsequent Nef reaction (Eq. 3.49).79b

CHO

1) CH3NO2, KF, i-PrOH

 

NO2

Nef

 

CHO

 

 

 

 

CO

Me

2) Ac2O, DMAP

 

 

CO Me

 

 

 

CO

Me

 

 

2

 

3) NaBH4

2

2

 

 

 

100%

(3.49)

 

 

 

 

Additional examples of the synthetic utility of this procedure are demonstrated in Eqs. 3.50–3.52.80 The nitro and nitroalkyl groups in the products are further converted into various functional groups such as carbonyl, amino, and alkyl groups. This is discussed in Chapter 6.

 

 

 

NHBz

 

 

 

 

 

 

 

 

N

N

 

Cbz

 

 

 

 

 

 

 

 

 

 

O2N

O

N

N

 

 

NH O

 

 

 

+

BnO

H

 

 

 

 

 

 

 

 

 

 

 

 

 

O

O

 

 

 

O

 

 

NHBz

 

 

 

 

 

 

 

 

 

 

 

 

 

Cbz

 

N

N

 

 

 

 

 

 

NH

 

 

 

 

 

1) KOt-Bu, t-BuOH, THF

BnO

O

N

N

 

 

2) Ac2O, DMAP, THF

O

NO2

 

 

 

 

3) NaBH4, EtOH, THF

 

O

O

(3.50)

 

 

 

 

 

 

 

53%

 

 

 

 

 

NHBz

 

 

 

 

 

 

 

 

N

N

 

 

Boc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O2N

O

N

N

 

 

NH O

 

 

 

+

Ph2CHO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

O

O

 

 

 

O

 

 

NHBz

 

 

 

 

 

 

 

 

 

 

 

 

 

Boc

 

N

N

 

 

 

 

 

 

NH

 

 

 

 

1) n-Bu4NF, THF, 18 h

 

Ph2CHO

O

N

N

 

2) Ac2O, DMAP

 

 

O

NO2

 

(3.51)

 

3) NaBH4, EtOH

 

 

 

O

O

 

 

 

 

 

 

 

 

70%

 

 

 

 

 

 

 

 

 

OAc

 

 

 

 

 

 

CHO

AcO

O NO2

 

 

 

 

 

AcO

OAc

 

 

 

 

 

 

O

 

 

 

 

OAc

 

 

O

1) KF

O O

 

 

 

 

O

(3.52)

 

O

 

+

 

 

O

AcO

 

 

2) Ac2O

 

 

NO2

 

 

O

 

 

 

AcO

OAc

 

 

 

O

 

 

 

 

 

O

3) NaBH4

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

71%

46 THE NITRO-ALDOL (HENRY) REACTION

Reduction of 1-nitro-1-alkenes with fermenting Baker’s yeast proceeds enantioselectively to give optically active nitroalkanes (Eq. 3.53).81

Ph

Ph CH2NO2

Baker's yeast

Me

 

NO2

 

Me H

(3.53)

 

 

 

 

50% (98% ee)

 

 

 

 

 

 

3.2.3 =-Nitro Ketones

α-Nitro ketones are useful intermediates in organic synthesis, and they are generally prepared either by nitration of ketones (Chapter 2.1) or by oxidation of β-nitro alcohols. Acylation of nitroalkanes with acylimidazoles or other acylating reagents is also a reliable method for the preparation of α-nitro ketones (see Chapter 5) (Eq. 3.54).

 

 

 

 

 

 

 

 

 

 

+

 

O

OH

oxidation

O

 

 

NO2

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(X = N N)

 

 

 

oxidizing agent

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

CrO3, Na2Cr2O7,

 

 

OM

 

 

 

 

 

 

 

 

 

 

 

PCC, etc.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2X

 

 

(3.54)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(X = Cl, OAc)

 

 

 

 

 

 

 

 

In this chapter the synthesis of α-nitro ketones by the hydroxyalkylation of nitroalkanes (Henry reaction) followed by oxidation is discussed. The oxidation is normally carried out by treating the nitro alcohols with CrO3 or Na2Cr2O7 in strong acidic media.82 To avoid acidic conditions, pyridinum chlorochromate (PCC)83 or K2Cr2O7 under phase-transfer conditions 84a has been used. Acid labile groups are retained under these conditions as shown in Eqs. 3.55 and 3.56. Recently, Ballini and coworkers established a one-pot, solvent-free synthesis of acyclic α-nitro ketones (by using neutral alumina) in the Henry reaction followed by in situ oxidation of the nitro alcohol using wet alumina supported with CrO3. 84b

OH

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

PCC

 

 

 

 

 

 

 

 

(3.55)

 

 

 

 

 

 

 

 

O2N O O

 

 

 

 

 

 

 

 

 

 

 

 

O O

 

12 h

 

O2N

 

 

 

 

 

 

 

78%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me NO2

 

 

 

 

 

 

 

Me NO2

 

 

K2Cr2O7, 30% H2SO4

 

 

 

 

 

 

 

(3.56)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n-(C4H9)4N+HSO-4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

CH2Cl2, −10 ºC, 2 h

77%

 

 

 

 

 

 

 

 

 

In general, alkylation or acylation of nitronate ions takes place at the oxygen to yield the O-alkylated or O-acylated products. However, the choice of alkylating or acylating reagents can alter the reaction course to give the C-alkylated or acylated products. The acylation of primary nitroalkane salts with acyl cyanides gives the O-acylated product in 30–70% yield.85 A combination of diethyl phosphorocyanidate and triethylamine allows the direct C-acylation of nitromethane by aromatic carboxylic acids to give α-nitro ketones.86 Acyl imidazoles are more effective as C-acylating agents of nitroalkane salts, and α-nitro ketones are obtained in good

3.2 DERIVATIVES FROM β-NITRO ALCOHOLS 47

yields.87 Although the isolated lithium salts of nitroalkanes are used in the original paper, the potassium salt prepared in situ by treatment of nitro compounds with t-BuOK in DMSO is reactive enough with acyl imidazoles to give α-nitro ketones in 60–90% yield (see Section 5.2, Acylation of Nitro Compounds) (Eq. 3.57).88

 

 

 

 

 

 

 

 

O

O

NO2

 

 

 

 

 

 

 

O O

1) t-BuOK/ DMSO

 

 

 

 

n-C6H13

(3.57)

 

 

NO2

2) n-C H

 

 

N

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

N

 

 

 

 

 

 

 

6

13

 

 

 

 

88%

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

The nitro group of α-nitro ketones is readily removed either by treatment with Bu3SnH89 or reduction with LiAlH4 of the corresponding tosylhydrazones (Eq. 3.58).90 Details of denitration are discussed in Section 7.2, and some applications of this process are shown in Schemes 3.5–3.7.

 

 

NO2

Bu3SnH, AIBN

 

 

R1

 

R1

 

 

80 ºC

 

 

2

R2

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

O

 

 

 

NO2

 

 

(3.58)

 

 

 

 

 

 

 

 

 

 

 

TsNHNH

 

 

 

LiAlH

4

 

 

2

R1

 

 

 

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NNHTs

 

 

 

 

 

 

Construction of the carbon frameworks by using the activating property of the nitro group followed by denitration provides a useful tool for the preparation of various natural products as shown in Schemes 3.5–3.7. For example, (Z)-jasmone and dihydrojasmone, constituents of the essential oil of jasmone flowers, have been prepared as shown in Scheme

3.5.91 Schemes 3.6 and 3.7 present a synthesis of pheromones via denitration of α-nitro ketones.92,93

 

 

 

 

NO

2

+

 

O

 

1) Al2O3

 

 

 

 

 

 

O

 

 

O

 

NO2

TsNHNH2

O O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

R 2) K2Cr2O7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H+

 

O

 

O

O

 

 

 

LiAlH4

O

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

acetone

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

NNHTs

 

 

 

 

 

 

 

 

 

 

 

 

 

NNHTs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

R = CH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R = (CH2)4CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3.5.

48 THE NITRO-ALDOL (HENRY) REACTION

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

O

 

 

 

 

 

 

 

 

amberlyst A-21

 

 

 

 

 

 

 

OCH3

 

 

+

 

 

 

OCH3

 

 

 

 

 

 

 

 

 

 

H3C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

O

 

 

 

 

 

 

 

 

 

 

OH

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

86%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCC

 

 

 

 

 

 

 

 

 

OCH3

Bu SnH, AIBN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

CH2Cl2

 

 

 

O

 

 

 

O

 

 

 

 

benzene

 

 

 

 

 

 

 

 

 

 

 

 

 

 

71%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

SCH3

 

 

 

 

 

 

OCH3

 

1) (CH2OH)2, H

 

 

 

 

 

 

OCH3

 

 

 

 

 

 

 

2) LDA, –78 ºC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

O

 

 

 

3) (CH3S)2, HMPA, 0 ºC

O

 

 

O

 

 

 

71%

 

 

 

 

4) (CO2H)2

 

 

 

 

80%

 

 

 

 

 

 

1) NaIO4

 

 

 

 

 

 

 

OCH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) 100 ºC

 

O

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

86%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3.6.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

C5H11

 

 

 

 

O

 

 

 

 

 

1) amberlyst A-21

C5H11

 

 

(CH2)9CH3

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

(CH ) CH

 

2) K2Cr2O7

 

 

 

 

 

 

NO

 

 

 

 

 

NO

 

 

 

 

 

2

 

 

 

2 9

3

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NNHTs

 

 

 

 

78%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TsNHNH2

 

C5H11

 

 

 

(CH2)9CH3

 

 

LiAlH4

 

 

 

 

 

 

 

MeOH

 

 

 

 

 

THF, 0 ºC

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NNHTs

 

 

90%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

C5H11

 

 

(CH2)9CH3

 

amberlyst A-15

 

 

C5H11

 

(CH2)9CH3

 

 

 

 

 

 

Me2CO/ H2O

 

 

 

 

 

 

 

90%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

95%

 

Scheme 3.7.

3.2.4 >-Amino Alcohols

β-Nitro alcohols prepared by the Henry reaction are important precursors for β-amino alcohols. The reduction of the nitro group to the amino function is commonly carried out by hydrogenation in the presence of Raney Ni in EtOH or Pd/C in THF and MeOH (see Section 4.2). The conversion into β-amino alcohols is also described in the Sections 3.2.5 and 3.3.

3.2.5 Nitro Sugars and Amino Sugars

The chemistry and biochemistry of nitro sugars and amino sugars have stimulated extensive research. They are the components of various antibiotics, which show important biological

Соседние файлы в предмете Химия