Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
27
Добавлен:
15.08.2013
Размер:
550.02 Кб
Скачать

 

III.3.1

Pd-CATALYZED HYDROGENOLYSIS

1015

N

1 atm H2

 

Ph

Pd/C

NH2

 

 

AcOH

 

 

1555 °C

O

N

O

N

 

178

179

90%

 

 

 

Ph

 

Ph

 

Scheme 54

G. HYDROGENOLYSIS OF HALIDES

Pd-catalyzed hydrodehalogenation of halides is a useful method for the removal of halogen atoms. Since other metals are usually not as effective for this reaction (there are exceptions), Pd is therefore the metal of choice. In fact, in order to preserve halogen on a substrate, other metals such as Pt, Rh, and Raney nickel are used in the hydrogenation of other functional groups. In general, the order of reactivity for halide removal is F Cl Br I. Fluoride is usually not hydrogenolyzed except in a limited number of cases. Unless the substrate contains a basic functional group, it is beneficial to add one or more equivalents of a base to neutralize the hydrogen halide formed in order to minimize its poisonous effect on the catalyst. In the absence of a base, rapid slowing down of the reaction may sometimes occur, resulting in incomplete reaction. The following are common bases used in hydrodehalogenation reactions: MgO, carbonates, bicarbonates, hydroxides, acetates, alkoxides, R3N, and DABCO. The useful hydrodehalogenation of acyl halides to aldehydes, the Rosenmund reduction, will not be covered here but will be covered in Sect. VI.2.4.

Besides carrying out dehydrohalogenation in organic solvents, the reaction can also be carried out in water. 1°-Chloride 180 was dehalogenated in an aqueous bicarbonate solution in 94% yield (Scheme 55).[77] Reduction of the corresponding bromide gave an 81% yield.

3°-Chloride 182 was also removed to give 184 as the major diastereomeric product in 83% combined yield (Scheme 56).[78]

 

OH

H2

 

OH

 

20 wt % of

 

 

O

Pd/C

 

O

 

O

aq. NaHCO3

O

 

Cl

OH

50 °C, 32 h

 

OH

HO 180 OH

 

 

HO

OH 181 94%

 

 

 

 

 

Scheme 55

 

 

 

S N

 

atm H2

 

N

 

10 wt % of

 

 

Cl

Pd/C(5%)

 

 

EtOH, r.t.

 

 

 

N

Cl

 

 

 

182

 

 

 

 

 

 

 

S

N

 

 

N

 

 

 

N

N

 

Cl

 

+

S

 

 

 

N

 

Cl

N

8%

184

75%

183

Scheme 56

 

 

 

1016

III Pd-CATALYZED CROSS-COUPLING

The imino chloride in 185 was completely reduced but the bridgehead chloride was not touched. Surprisingly, when the bridgehead chloride was replaced with a methyl group, only 10% of the imino chloride reduced product was observed and the major product was the bislactam from hydrolysis (Scheme 57).[79]

The selective removal of the chloride in the presence of a readily hydrogenated aromatic nitro group was also reported (Scheme 58).[80] Acetonitrile was used as the solvent along with triethylamine as the base for the hydrogenolysis of the chloro group in chloronitrobenzene derivative 187. In EtOAc, however, the nitro group was concomitantly reduced to give aniline 189 in 80% yield.

It was interesting to note that in the process of removing the bromide in 190[81] and 193,[82] the hydroxy and acetoxy groups were also lost (Scheme 59). The primary bromide in 191 was removed in a separate step.

At 75% conversion, selectivity was observed in the reduction of bromoepoxysulfone 195 to give desbromo 196 in 79% yield with only 5% of the epoxide opened product 197 formed (Scheme 60).[83] On prolonged reaction time (15 h) hydroxysulfone 197 was obtained in 72% yield.

The multiple chloro-substituted substrate 198 underwent complete hydrodechlorination in good yield by passing the substrate over Pd/C at 250 °C and atmospheric hydrogen pressure (Scheme 61).[84]

In the hydrogenolysis of the Cbz group in 200, monodechlorination of the trichloroacetamide was also observed to give 201 in excellent yield (Scheme 62).[85]

 

 

 

 

4 atm H2

 

 

 

 

 

CH2Ph

30 wt % of

 

CH2Ph

 

 

 

 

Pd/C(10%)

 

 

 

 

N

O

N

O

 

DABCO, THF

 

 

 

 

r.t.

 

 

 

Cl

N

Cl

 

N

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

185

 

 

186

64%

Scheme 57

O2N

CO2H

 

 

3 h,

 

 

MeCN

O2N

CO2H

 

 

 

 

 

 

 

Cl

5 h

187

EtOAc

H2

188 70%

510 wt % of

Pd/C (5%)

Et3N

80

°C

H2N

CO2H

189 80%

Scheme 58

 

 

 

 

 

 

 

 

 

 

III.3.1 Pd-CATALYZED HYDROGENOLYSIS 1017

Br

OH

 

 

H2

Br

OH

 

 

 

H2

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

Pd/C (5%)

 

 

O

 

 

 

Pd/C, Et3N

O

 

O

 

 

 

 

EtOH

 

 

O

 

EtOAc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

H

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH Br

 

 

 

 

 

 

 

191

 

 

 

 

 

192

 

 

 

 

190

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31% over 2 steps

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AcO

 

 

 

 

N

 

 

atm H2

 

 

 

AcO

 

 

N

 

 

 

 

 

 

 

 

10 wt % of

 

 

 

 

 

O

 

 

N

NH2

 

 

 

 

 

 

 

 

 

 

 

AcO

 

 

 

Pd/C (10%)

 

 

 

O N

 

 

NH2

 

 

 

 

 

 

 

 

 

MgO, DMF

AcO

 

 

 

Br

 

 

 

N

N

 

r.t., 30 h

 

 

 

 

 

 

N

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OAc

 

 

 

 

 

 

 

 

 

 

 

193

 

 

 

 

 

 

 

 

 

 

 

194

72%

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 59

 

 

 

 

 

 

 

Br

 

 

O

H2, BaCO3

 

 

76 wt % of

PhCO2

OMe Pd/C(10%)

 

 

 

2 h

 

O2S

 

 

 

 

 

O

 

 

 

 

O

 

 

 

O

PhCO2

OMe

PhCO2

OMe

O2S

+

O2S

OH

 

O

 

 

 

 

195

 

 

 

196

79%

 

 

197

5%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 60

 

 

 

 

 

 

 

F

Cl

 

 

 

atm H2

 

F

 

 

 

 

 

 

 

 

 

Pd/C(1%)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

Cl

 

 

250 °C

F

 

 

 

 

 

 

 

 

 

 

 

 

F

 

 

 

 

 

F

 

 

 

 

 

 

 

 

 

 

 

 

198 Cl

 

 

 

 

 

 

199 65%

 

 

 

 

 

 

 

 

Scheme 61

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

O

O HO

 

Ph

O

O HO

 

4 atm H2

Ph

O

 

 

 

 

 

 

 

 

 

 

O

 

OCbz

12 wt % of

 

 

 

O

OH

 

O

 

Pd/C (10%)

 

O

 

 

H

 

 

 

H

 

 

 

 

EtOAc, MeOH

 

 

 

 

HN

 

 

r.t., 5 h

 

 

HN

 

 

 

 

 

 

 

 

 

 

 

 

 

Cl

OH

 

 

 

 

 

 

 

Cl

 

OH

 

 

 

O

 

 

 

 

 

 

 

 

 

O

 

 

 

Cl

 

 

 

 

 

 

 

Cl

 

 

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

201

94%

 

Scheme 62

1018

III Pd-CATALYZED CROSS-COUPLING

The selective monodebromination of geminal-substituted dibromopropane 202[86] was realized in only fair yield, whereas an excellent yield was obtained in the monodebromination of , -dibromolactam 205[87] (Scheme 63).

Dichlorolactam 207 behaved similarly to give the monochlorolactam in 98% yield (Scheme 64).[88]

More interestingly, 50% enantioselectivity was observed in the monodechlorination of, -dichlorolactam 209 using a cinchonine modified Pd catalyst (Scheme 65).[89]

In some cases alkenyl halides can be hydrodehalogenated without the reduction of the resulting olefins. Some examples are presented below (Scheme 66).[90]–[92] These olefinic products can and should eventually be reduced on prolonged reaction time or under more vigorous hydrogenation conditions.

Iodobutadiene 218 was also dehalogenated selectively (Scheme 67).[93]

Ph

 

 

50 psi H2

 

 

50 wt % of

H

 

 

Pd/C(10%)

 

CO2Et EtOAc, Et3N

Br

 

 

r.t., 9 days

 

 

 

 

 

Br

H N

PhCO

202

EtO2C

 

H2

 

Pd/C(5%)

N

Br

AcOH, r.t.

 

quinoline

 

 

 

 

 

 

Br

HN

O

205

Ph

Cl

Cl

N O

Ph

207

Cl

Cl

HN O

209

Ph

Ph

Br

H

CO2Et

 

H N

PhCO

203 29%

EtO2C

N

Br

HN

206 O 92%

Scheme 63

H2

20 wt % of Pd black benzene, 8 h

Scheme 64

3 atm H2

60 wt % of Pd/BaSO4(5%) THF, Bu3N cinchonine, r.t.

Scheme 65

H CO2Et

+

Br

H N

PhCO

204 23%

Ph

Cl

N O

Ph

208 98%

HN

Cl

O

21096%

50% ee

III.3.1 Pd-CATALYZED HYDROGENOLYSIS

1019

O O

O O

Br

+

O

O

Br

Br

211

212

O2S

I

214

atm H2

4.5 wt % of Pd/C (10%) EtOH, Et3N

atm H2

6 wt % of Pd/C(5%) NaOAc, MeOH quinoline

r.t., 2.5 h

 

 

O

 

atm H2

 

Ph

 

8 wt % of

 

 

 

 

 

 

 

 

 

 

Pd/C(10%)

 

 

 

 

 

 

Ph

 

 

 

 

 

EtOH

 

 

 

 

 

r.t., 3 h

 

 

 

 

 

 

 

 

 

 

 

Cl

216

I

FOH

OH

Scheme 66

atm H2 Pd/C(3%)

MeOH, NaOAc r.t., quinoline

218

Scheme 67

O O

O

213 56%

O2S

215 96%

O

Ph

Ph

217 85%

FOH

OH

219 75%

Under catalytic hydrogenolysis conditions, (Z)-N-methoxyarenecarboximidoyl halides 220 gave oximes 221 as the major if not exclusive product. The corresponding (E)-N- methoxyarenecarboximidoyl halides 223 gave nitriles 222 as the major or exclusive product instead (Scheme 68).[94]

With a variety of N-methoxyalkanimidoyl halides 225, good yields of oximes 226 were obtained exclusively.

Halogen-substituted aryl and heterocyclic compounds can also be hydrodehalogenated as easily. With NaOAc as the base, iodopyrrole was deiodinated in quantitative yield (Scheme 69).[95]

Chlorinated acetophenones and benzophenones were hydrodechlorinated selectively under phase transfer conditions without the hydrogenation of the ketone (Scheme 70).[96]

The hydrodehalogenation of -bromonitrobenzene with Pd and H2 to give nitrobenzene is usually unsatisfactory, but under transfer hydrogenation conditions with triethylammonium formate a 91% yield of nitrobenzene was obtained.[97]

Transfer hydrogenation with cyclohexene also removed the chloride in chlorodinitroaniline 233 but one of the two nitro groups was also reduced (Scheme 71).[98]

1020

III Pd-CATALYZED CROSS-COUPLING

 

 

Br

 

atm H2

 

 

 

H

 

 

 

 

 

 

 

3 wt % of

 

 

 

 

 

 

R1

 

OMe

 

Pd/C

 

 

 

R1

 

 

 

OMe R1

 

 

N

 

t-BuOH, Et3N

 

 

 

 

N

 

 

 

r.t., 1 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

R2

 

 

 

R2

 

R3

 

 

 

 

 

 

 

 

 

 

 

R3

220

 

 

 

 

(a) R1 = R3 = H, R2 = OMe 221a 63%

 

 

 

 

 

 

(b) R1 = R2 = R3 = OMe

221b 70%

 

 

Br

 

 

 

 

 

 

 

 

H

R1

 

 

 

 

 

 

 

 

R1

 

 

 

 

R1

 

 

N

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

 

OMe

 

 

 

 

R2

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

 

R3

 

 

 

 

 

 

 

 

 

 

R3

 

 

 

223

 

(a) R1 = R3 = H, R2 = OMe

224a 11%

 

 

 

(b) R1 = R2 = R3 = OMe

 

224b

0%

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

R4

OMe

 

 

 

 

 

R4

 

 

OMe

225

N

 

 

 

 

 

 

226

N

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) R = 2-naphthyl, X = Br

 

 

76%

 

 

 

 

(d) R = 4-MeOC6H4, X = Br

(b) R = PhCH2, X = Br

 

 

78%

 

 

 

 

(e) R = NC(CH2)9, X = Br

(c) R = 4-AcC6H4CH2, X = Br

84%

 

 

 

 

(f) R = PhCH2, X = Cl

N

R3

222a 8%

222b 0%

N

R3

222a 69%

222b 88%

85%

69%

64%

Scheme 68

Me

 

 

 

R

 

 

 

atm H2

 

 

Me

 

R

 

 

 

 

 

 

 

 

 

 

 

 

24 wt % of

 

 

 

 

 

 

R = p-CH3C6H4

 

 

 

 

 

 

 

 

Pd/C(5%)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MeOH, NaOAc

 

 

 

 

 

 

 

R = C6H5(CH2)2

Ts

N

I

 

 

 

r.t., 1 h

 

 

Ts

 

N

 

 

 

R = Et

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R = t-Bu

 

H

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

227

 

 

 

 

 

 

 

 

 

 

 

228

100%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 69

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

atm H2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25 wt % of

 

 

 

 

 

 

 

 

 

 

 

Cl

 

 

 

 

 

 

Pd/C(5%)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aq. KOH, isooctane

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aliquat 336

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50 °C, 2.25 h

 

 

 

 

 

 

 

 

 

 

 

229 Cl

 

 

 

 

 

 

 

 

 

230

 

O 81%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30 °C, 4.5 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

231

 

 

 

 

 

 

 

 

 

 

 

232

 

 

 

77%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cl

O

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 70

 

 

 

III.3.1 Pd-CATALYZED HYDROGENOLYSIS 1021

 

 

NH

cyclohexene

NH

 

 

125 wt % pf

 

 

 

 

O2N

NO2

Pd/C(10%) O2N

NH2

 

 

 

EtOH

 

 

 

 

reflux, 0.5 h

 

233

Cl

 

 

234 85%

 

 

 

 

 

Scheme 71

 

Although transfer hydrogenolysis conditions can be used to remove a 1°-chloride such as 235,[99] modification of the reaction conditions also allowed the selective removal of the aryl chloride in 237[100] while leaving the alkyl chloride untouched (Scheme 72).

Other monohalogen transfer hydrogenolysis was seen with trichloroanilide 239[101] and dibromo steroidal derivative 241[102] (Scheme 73).

The hydrogenation of benzaldehyde to the alcohol is usually facile with Pd, but even under the refluxing temperature of the transfer hydrogen conditions, hydrodehalogenation of bromoformylimidazole 243 still provided the formylimidazole in 70% yield (Scheme 74).[103]

Besides observing hydrodehalogenation of aryl bromides under transfer hydrogen conditions, in some cases biaryl coupling is observed. Bromopyridine 245 was homocoupled to give the bipyridyl 246 in 68% yield (Scheme 75).[104]

HCO2NH4 125 wt % of

 

 

HN

 

 

 

 

 

 

Cl

 

Pd/C, MeOH

HN

 

 

 

 

 

 

 

 

 

 

 

N

NH2

 

 

reflux

 

N

 

NH2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

235

 

 

 

 

 

HCO2H

 

 

 

236

66%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30 wt % of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pd/C(30%)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cl

 

DMF

 

 

 

 

 

 

 

 

 

 

 

 

Cl

237

 

 

 

 

 

reflux, 5 h

Cl

238

 

 

 

 

 

 

 

 

 

 

85%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 72

 

 

 

 

 

 

 

 

 

 

O

 

O

 

 

 

HCO2H, Et3N

O

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pd

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

CH3CN, NaOAc

 

 

 

N

 

 

 

 

Cl

 

 

 

Cl

 

 

 

80 °C, 3.8 h

Cl

 

 

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

239

Cl

 

 

 

 

 

 

O

 

 

 

 

 

240

77.6%

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HCO2H

 

 

 

 

 

 

 

 

 

 

Br

 

 

 

H

 

 

 

 

33 wt % of

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

Pd/C(10%)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

H

 

reflux, 1.5 h

 

 

 

 

 

 

 

H H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DMF

 

 

 

 

 

 

 

HO

 

 

 

 

 

 

 

 

 

 

 

 

 

HO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

241 Br

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Br

 

242 70%

Scheme 73

1022 III Pd-CATALYZED CROSS-COUPLING

 

 

HCO2NH4

 

CHO

0.5 wt % of

N

Pd/C(10%)

 

 

MeOH

 

 

 

 

reflux

N Br

243

Scheme 74

HCO2Na

Pd/C, EtOH

r.t., 6 h

N 245 Br

Scheme 75

CHO

N

N 244 70%

N

N

246 68%

H. HYDROGENOLYSIS OF BENZYLIC AND OTHER C—O BONDS

Of all the heterogeneous Pd-catalyzed C—O bond hydrogenolysis reactions, cleavage of benzyl esters is the most facile (Scheme 76).[105]

Benzyl carbonates[106] and carbamates[107] can be hydrogenolyzed as readily with the concomitant release of CO2 (Scheme 77).

O

 

 

 

 

O

O

 

 

 

H2

O

 

 

 

 

OCH2Ph

Pd/C

 

 

OH

 

 

 

 

 

 

 

MeOH

 

 

 

 

 

 

 

 

 

 

 

O HN O

 

r.t.

O

HN O

OBu-t

 

 

 

248

OBu-t

247

 

 

 

 

 

96%

 

 

 

 

 

Scheme 76

 

 

 

 

O

 

 

 

O

 

 

 

O N

O

MeO

 

 

O

 

 

 

O

OMe

 

O

O

249

 

 

 

 

 

 

 

 

 

H2

O

NH

 

 

 

 

 

 

 

 

 

 

12 wt % of

 

 

 

 

 

 

 

Pd/C(10%)

 

 

 

 

 

 

 

EtOAc, r.t.

 

 

O

 

 

 

 

MeO

O

 

 

 

 

 

 

 

 

 

 

 

 

HO

OMe

 

 

 

 

O

250 98%

 

 

 

 

O

 

 

 

 

NH2

 

 

 

NH

H2, Pd/C

O

O

EtOH, Et3N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

O

 

251

 

 

 

252

92%

Scheme 77

III.3.1 Pd-CATALYZED HYDROGENOLYSIS

1023

Debenzylation of esters has been carried out under transfer hydrogenation conditions with ammonium formate as the hydrogen source (Scheme 78).[108],[109] Under transfer hydrogenolysis conditions, the vinylogous carbamate 253 also underwent decarboxylation. The N-benzyl was also hydrogenolyzed.

Even 2-phenylethylcarbamate (“homobenzyloxycarbonyl”) can be hydrogenolyzed (Scheme 79).[110]

Although hydrogenolysis of benzyl ethers is slower than benzyloxycarbonyl derivatives, especially when an amine is used as an additive,[111] they are still readily reduced in a variety of solvents (Scheme 80).[112],[113]

In the case of binaphthyl ether 263, the secondary C—O bonds were hydrogenolyzed exclusively to provide the desired binaphthyl diol 264 (Scheme 81).[114]

 

 

 

 

Pd/C(10%)

 

 

 

 

 

O

NH4HCO2

t-BuO

O

t-BuO

 

 

MeOH

 

O

 

O

 

 

 

100 °C, 0.5 h

 

N

 

 

 

 

N

O PhCH

2

OCH2Ph

 

 

O

H

 

O

 

 

254

97%

253

 

 

 

Scheme 78

H O N

O

100 wt % of

 

Pd(OAc)2

 

NH4HCO2

 

MeOH

H

r.t., 8 h

H N

 

 

 

255

 

 

 

 

 

 

 

256

90%

 

 

 

 

 

Scheme 79

 

 

 

 

 

 

 

 

 

 

 

 

 

atm H2

 

 

 

 

 

 

 

 

O

Ph

 

Pd/C(5%)

 

 

O

 

 

 

 

Ph

 

NH4OAc

 

 

 

 

 

 

t-BuO

O

 

t-BuO

 

 

 

 

O

 

 

MeOH, 16 h

 

 

 

 

 

HN

 

 

r.t.

 

HN

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

OH

 

O

Ph

 

 

 

 

 

 

 

O

 

 

 

257

 

 

 

 

 

 

 

 

 

258

96%

 

 

 

 

CH2Ph

 

H2, Pd/C

 

O

 

OH

 

 

 

O

O

 

MeOH

 

 

 

 

 

 

 

 

 

 

r.t., 12 h

 

 

 

 

 

 

 

 

P

N

P

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

EtO

 

 

 

 

 

 

 

EtO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OEt

 

 

 

 

 

OEt

 

 

 

 

 

259

 

 

 

 

260

95%

 

 

 

 

TBDMSO H H

 

 

H2, Pd/C

TBDMSO

 

H

H

 

 

 

 

EtOAc

 

 

 

 

 

 

 

 

r.t.

 

 

 

 

 

 

 

 

NH

O

 

 

 

 

 

 

O

 

 

NH

OH

O

CH2Ph

 

 

 

 

 

 

 

262

100%

 

261

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 80

1024

III Pd-CATALYZED CROSS-COUPLING

O

 

5.1 atm H2

 

 

 

 

 

Pd/C

 

 

AcOH, r.t.

O

263

Scheme 81

OH

OH

264 90%

Benzyl ethers can be cleaved under hydrogen transfer conditions with many commonly used hydrogen donors such as ammonium formate,[115] 2-propanol,[116] and cyclohexene.[117]

Although the hydrogenolysis of benzyl protecting groups is faster than many other hydrogenolyzable groups, hydrogenolysis of benzyl ethers has been found to be inhibited by 2-methylnaphthalene. In the competitive hydrogenolysis of diether 265, only the naphthylmethyl ether group was cleaved to give the benzyloxy alcohol 266 (Scheme 82).[118] The 2-methylnaphthalene formed continued to inhibit the deprotection of the benzyl group. In fact, the addition of 2-methylnaphthalene alone inhibited the hydrogenolysis of benzyl ethers.

In addition, a catalytic amount of pyridine or ammonium acetate also suppresses the hydrogenolysis of aliphatic O-benzyl protective group.[111],[119] Cleavage of phenolic benzyl ethers, which are more labile than alkyl benzyl ethers, can also be prevented by the addition of 2,2 -dipyridyl (Scheme 83).[120]

The reduction of the stilbene olefin in 267 occurred selectively first while the aromatic nitro group was reduced with longer reaction time. Even prolonged reaction time did not further hydrogenolyze the phenolic benzyl ether.

 

 

 

 

 

 

 

 

 

 

1 atm H2

 

 

 

 

 

 

 

 

 

O

 

 

Pd/C(10%)

 

 

 

O

 

 

 

PhCH2

 

O

 

 

 

 

EtOH, r.t.

PhCH2

 

 

OH

 

 

 

 

 

 

 

265

 

 

 

 

 

 

 

 

 

266

96%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 82

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

atm H2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 wt % of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pd/C(5%)

 

 

 

 

 

 

 

PhCH2O

 

 

 

 

 

 

 

MeOH PhCH2O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

r.t. 2 h

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

267

 

 

2,2-dipyridyl

268

 

84%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PhCH2O

 

 

 

 

 

 

NH2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

269

86%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 83

 

 

 

 

 

 

 

Соседние файлы в папке Negishi E. 2002 Handbook of organopalladium chemistry for organic synthesis