Скачиваний:
25
Добавлен:
15.08.2013
Размер:
761.27 Кб
Скачать

CHO

O

O

154d

PPh3

 

O O

 

O O

 

OCH3

 

Cl

 

CH3

H3CO

H3CO

C l

H3CO

N

 

 

 

 

 

COOCH3

 

 

OP

 

OHC

OCH3

 

OCH3

 

 

PPh3

 

OCH3

 

 

P = t-BuMe2 Si

OBz

 

OBz

Ph3 P

 

 

OHC

 

COOMe

 

 

CH3

N

COOCH3

OCH3

 

H3CO OCH3

OCH3

154e

OP

CH3

OCH3

Maytansinoids

COOMe

154f

eicosinoid monohydroxy fatty acid

409

410

TABLE 14. Polyene synthesis through the Wittig reaction

Ketone

Wittig ylide

Olefinic compound

Reference

O

O

O O

 

O O

OHC

COOEt

 

 

p = t-BuPh2Si

HO

 

CH3

H3C

O OH

O

CHO

H3 C

 

MeO H O H

R

CHO

O O

R = NHCOOCH2 CCl3 ; P = PhCH2

Ph3P

C5H11

 

 

PO

OMe

Ph3P

O

O

 

CH3

O

N

Ph3P

 

O

OP

COOEt

155a

OP

Lipoxin A

HO

 

CH3

 

 

 

 

 

H3 C

O

OH

 

 

 

155b

 

 

 

O O

O

 

 

 

 

 

H3 C

 

 

 

 

 

 

 

Neocitroviridinol

 

OMe

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

MeO

 

 

O

N

 

 

H

O

H

155c

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

O

OP

 

 

 

 

O

 

H3 COOC

O

CHO

Ph3 P

 

H3 COOC

O

 

 

155d

OHC

COOMe

 

S

 

S

 

 

S

PA r3

S

COOMe

 

 

OCOPh

OCOPh

155e

 

 

 

A r = p-Anisyl

 

 

PPh3

 

 

CHO

 

 

 

155f

411

412

Goverdhan Mehta and H. Surya Prakash Rao

B. Arsenic Ylides

Stabilized arsenic ylides are more reactive than the corresponding phosphorus (Wittig) ylides159. In many cases where phosphorus ylides failed to react with carbonyl compounds, the corresponding arsenic ylides have been applied in the olefin forming reactions. Huang and coworkers developed the chemistry of arsenic ylides for the synthesis of dienes and polyenes160. Thus, 3-ethoxycarbonylallylidenetriphenylarsone reacts with a variety of aldehydes and ketones to afford diene esters (equation 95). This reagent reacts with aromatic aldehydes stereospecifically leading to the formation of E, E-products. Another reagent of high synthetic potential is formylallyltriphenylarsonium bromide161. This reagent reacts with aldehydes to give dienals, which can again be subjected to olefination in an iterative fashion (equation 96). In a similar manner, an isoprenoid arsone reagent, 3-methoxycarbonyl-2-methyl-2-propenylidenetriphenylarsorane, for appending isoprenoid

unit to aldehydes, has been developed (equation 97)161b. Applications of arsenic ylides for the synthesis of dienes and polyenes are given in Table 15160,161a,162.

 

CHO

 

 

 

 

+

(C6 H5)3 As

CH CH CH COOEt

 

 

 

 

NaOEt

(95)

 

 

 

 

 

 

 

COOEt

 

CHO

Br

 

 

CHO

+

Ph3 As+

CHO

1. K2CO3

 

 

 

 

2. I2

 

N

 

 

N

 

(96)

CHO

+Br+

N

Ph3 As

 

COOMe

 

 

NaOMe

(97)

 

 

 

COOMe

N

C. The Horner Wadsworth Emmons (HWE) Reaction

An important modification to the Wittig reaction is the use of stabilized phosphonate carbanions in olefin synthesis. This reaction, originally discovered by Horner but developed by Wadsworth and Emmons, is used extensively for transformation of a carbonyl

TABLE 15. Dienes and polyenes with arsenic ylides

Substrate

Arsenic ylide

 

 

Product

Reference

 

CHO

 

 

 

COOEt

 

Ph3A s

COOEt

 

 

160

 

 

 

 

 

 

 

 

 

O

 

CHO

 

 

 

 

 

Ph3A s

 

 

 

161a

 

 

 

 

 

N

 

O

N

Navenone

 

 

 

 

 

O

 

 

 

 

CH3 (CH2 )8

Ph3A s

N

CH3 (CH2 )8

O

 

 

 

 

 

CHO

N

162 a

 

 

 

 

Achillea amide

 

continued overleaf

413

414

TABLE 15.

(continued)

 

 

 

 

 

Substrate

 

Arsenium ylide

Product

 

Reference

S

 

 

O

S

 

162a

 

 

 

 

 

 

CHO

Ph3A s

N

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

Otanthus maritina amide

 

 

 

 

 

 

O

 

 

O

 

 

 

COOMe

 

OHC

 

 

C5H11

 

162b

COOMe

Ph3A s

H

H

 

 

H H

 

 

 

 

 

 

 

 

 

Leukotriene A 4 (LTA 4) methyl ester

 

PhCH2O

CHO

 

 

PhCH2O

CHO

 

H

 

Ph3A s

CHO

H

 

162c

 

 

 

 

 

OCH2 Ph

 

 

 

OCH2Ph

 

9. Synthesis of conjugated dienes and polyenes

415

group to an olefin163. Phosphonate carbanions are more nucleophilic than the corresponding Wittig ylides, and therefore are more reactive towards carbonyl compounds, especially when the substituent on the phosphonate reagent is an electron-withdrawing group. When the substituent on the phosphonate reagent is an electron-withdrawing group such as an ester or ketone, the product in the olefination reaction is predominantly E.

HWE reaction has been used extensively for the synthesis of dienes and polyenes. Examples from recent literature are shown in Table 16 (dienes) and Table 17 (polyenes). HWE reaction also has been used for intramolecular cyclizations leading to polyene macrolides (Table 18).

D. The Wittig Horner Reaction

Another variation of the Wittig reaction is the Wittig Horner reaction, in which the anion generated ˛- to phosphine oxide is used as a nucleophile to react with carbonyl compounds167. The intermediate formed in this reaction, ˇ-hydroxyphosphine oxide, is isolable particularly when bases with lithium counterion are used for deprotonation. Since the ˇ-hydroxyphosphine oxides are diastereomers, they can be separated and subjected to elimination to form the corresponding alkenes168. Since the elimination of phosphonate moiety is syn, stereospecific alkenes are obtained from the elimination step169. As expected, the generation of erythro and threo isomers is dependent on the solvent and the reaction conditions.

When one of the reacting partners in the Wittig Horner reaction, either the phosphine oxide or the carbonyl compound, has a double bond, the product is a diene. The Wittig Horner reaction was utilized by Smith and coworkers in the total synthesis of milbemycin (equation 98)170. They found that when sodium hexamethyldisilazide was employed as a base, the desired E-diene selectivity is high (85%). Some examples from the literature where the Wittig Horner reaction has been utilized for the construction of E-double bonds present in dienes and polyenes are given in Table 19171.

H

O

Ph2 P

O

 

O

 

+

COOMe

CHO

 

OP

 

H

NaN(SiMe3 )2

O

 

O

OMe

(98)

 

OP

 

COOMe

 

OMe

P = t-BuMe2 Si

416

TABLE 16. Diene synthesis through HWE reaction

Starting aldehyde

Phosphonate

Product

Reference

OHC

CH3

CH3 OOC

CH3

 

 

 

O

 

 

 

OP

(MeO)2 P CH2COOCH3

OP

 

 

 

 

164a

 

S

 

S

 

 

 

 

S

 

S

 

 

P = MeOCH2

 

 

 

 

 

 

Methylmaysenine

 

PO

NH(BOC)

COOEt

PO

NH(BOC)

 

(OEt)2 PCH2

 

OHC

 

O

 

 

P = t-BuMe2Si

 

 

164b

 

 

 

EtOOC

lejimalides

O

O

O

O

CHO

R = (MeO)2 C6 H3 CH2

CH3 CHO

O CHO

O

 

 

 

 

O

O

 

 

O

OH

 

 

 

 

O

 

 

 

 

 

 

 

 

 

P

 

 

 

 

(OEt)2

 

 

 

 

 

 

 

N R

O

O

 

 

 

 

O

164c

 

 

O

 

 

 

 

 

 

 

 

 

 

 

N R

 

 

 

 

 

 

 

 

 

 

 

OH

O

 

 

 

 

 

 

O

 

 

 

O

 

 

 

 

 

 

 

 

164d

O

P

(OEt)

 

 

CH3

 

 

 

 

 

 

 

2

 

 

 

 

 

O

 

 

O

 

COOCH3

 

 

 

COOCH3

 

(OEt)2 P

 

 

 

 

164e

 

 

 

 

 

 

 

 

 

O

 

 

417

418

TABLE 17. Polyene synthesis through HWE reaction

Aldehyde

 

 

Phosphonate

 

Product

Reference

 

CHO

O

 

 

CN

 

 

 

 

 

 

 

 

 

(EtO)2 P

CN

 

 

 

OP

 

 

 

OP

 

165a

 

 

 

 

 

P = t-BuMe2Si

 

 

 

 

 

OP OP

O

 

OP

OP

 

 

 

 

 

 

 

CHO

(EtO)2 P

 

COOEt

 

COOEt

 

 

 

 

 

 

143

P = t-BuMe2Si; P ′ = Et3Si

 

 

 

(Amphotericin fragment)

 

 

 

O

o

 

 

 

 

 

 

 

 

 

Br

CHO

(EtO)2 P

o

Br

CHO

86

 

 

 

 

 

 

 

 

 

 

CHO

O

 

 

 

 

HO

 

(EtO)2 P

CN

HO

CN

165b

 

 

 

 

 

O

 

 

 

 

 

 

(EtO)2 P

 

 

 

 

CHO

 

 

Ph

 

 

 

 

 

MeOOC

Ph

 

 

 

 

 

 

165c

 

 

 

 

 

COOMe

 

 

 

 

 

 

Соседние файлы в папке Patai S., Rappoport Z. 1997 The chemistry of functional groups. The chemistry of dienes and polyenes. V. 1