Скачиваний:
36
Добавлен:
15.08.2013
Размер:
190.1 Кб
Скачать

 

 

2. Structural chemistry

 

 

95

TABLE 4. (continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound

C N

N H

<C N H

<H N H

State

Method

Reference

2,4,6-Triamino-1,3,5-

 

 

 

 

 

 

 

triazine

1.343(2)

0.914(21)

117.2(12)

120.6(18)

S

XD

42

 

0.877(27)

 

119.5(9)

 

 

 

 

 

1.337(1)

0.813(12)

118.2(15)

123.1(21)

 

 

 

 

 

0.881(21)

117.2(18)

 

 

 

 

 

1.362(4)

0.926(28)

110.0(12)

119.0(9)

 

 

 

 

 

0.926(15)

114.7(15)

 

 

 

 

 

1.338(2)

1.034(5)

119.1(2)

118.9(4)

S

ND

42

 

 

1.002(5)

120.1(2)

 

 

 

 

 

1.346(2)

1.009(4)

117.4(4)

120.9(4)

 

 

 

 

 

1.027(2)

118.5(3)

 

 

 

 

 

1.362(1)

1.000(6)

115.3(2)

 

 

 

 

 

 

1.021(4)

115.9(3)

 

 

 

 

3,6-Diamino-

 

 

 

 

 

 

 

1,2,4,5-tetrazine

1.332(1)

0.94(2)

121

115

S

XD

43

 

 

0.87(1)

124

 

 

 

 

a At 20 K.

b The asymmetric unit in the structure consists of two crystallographically independent molecules.

respectively] reflect the clear effect of the amino and nitro substituents. For example, the four benzene C C bonds per molecule directly associated with the amino group fragments are substantially longer than the usual 1.40 A˚ value observed in ordinary aromatic rings; the four C C bond length averages in molecules (I) (IV) are 1.431(3), 1.434(9), 1.433(7) and 1.434(3) A,˚ respectively. The averages of the internal C C C angles at the benzene ring atoms linked to the amino and the nitro substituents are 116.0(2) and 122.2(2)°, 116.5(6) and 121.4(6)°, 116.4(4) and 122.1(4)° and 116.2(2) and 122.2(2) in molecules (I) (IV).

The eight C NH2 distances in the four compounds are remarkably similar, ranging from 1.314(7) to 1.332(3) with an average of 1.321(8) A˚ . The twelve C NO2 distances cover the wider range of 1.409(6) to 1463(6), although the four C(4) N bonds span the more limited range of 1.420(3) to 1.439(2) A˚ .

D. Heterocyclic Amines and Related Molecules

Table 4 gives structural parameters for amino groups in some heterocyclic compounds.

IV. THE NITROSO GROUP

As already outlined in the previous review1, the nitroso group is of great interest from the theoretical point of view but also because of the facility with which these molecules dimerize; only a few monomeric structures have been noted in the literature in the period under examination.

In Table 5 structural parameters for nitroso groups are presented.

A comparison of structures of N-methyl-N-nitroso-p-nitrobenzamide, N,N0 - dimethyl-N-nitrosourea, N-methyl-N-nitrosourea, 2-nitroso-2-azabicyclo[2.2.2]octan-3- one to those of N-methyl-N0 -nitro-N-nitrosoguanidine and N,N0 -dimethyl-N00 -cyano-N- nitrosoguanidine shows that the N N and C NNO bond lengths in the nitroguanidines44 are similar to those found in the nitrosoamides, but that the corresponding bonds in

96

Salvatore Sorriso

 

 

 

TABLE 5. Bond lengths and angles in some nitroso compounds

 

 

 

 

 

 

 

 

 

 

Compound

X/Y N

N O

X/Y N O

State

Method

Reference

N-Methyl-N-nitroso-

1.3415(13)y

 

114.11(9)y

 

 

 

N0 -nitroguanidinea

1.2276(14)

S

XD

44

 

1.3596(14)

1.2187(16)

114.01(10)

 

 

 

 

1.3521(10)

1.2195(10)

114.12(7)

S

XD

45

N-Methyl-N-nitrosourea

1.326(2)y

1.231(29)

114.4(2)y

S

XD

46

N,N0 -Dimethyl-

1.332(2)y

 

113.9(2)y

 

 

 

N-nitrosourea

1.227(2)

S

XD

46

3,3-Di-isopropyl-

 

 

 

 

 

 

1(Z)-nitroso-

1.327(2)y

 

114.0(1)y

 

 

 

1-(p-tolyl)urea

1.240(2)

S

XD

47

3,3-Dibenzyl-1 E -

1.345(5)y

 

114.5(3)y

 

 

 

nitroso-1-(2-tolyl)urea

1.227(5)

S

XD

47

1-(4-Methoxyphenyl)-

1.357(6)y

 

114.3(3)y

 

 

 

3-methyl-1 E -nitrosourea

1.219(5)

S

XD

47

1-(2-Chloroethyl)-3-(trans-

 

 

 

 

 

 

4-methylcyclohexyl)-

1.333(4)y

1.218(4)y

114.6y

 

 

 

1-nitrosourea

S

XD

48

1-Nitro-10 -nitroso-

1.573x

1.246

106.8x

 

XD

49

bicyclopropyl

S

trans-1,4-Dichloro-1,4-

1.505(7)x

 

116.5(6)x

 

 

 

dinitrosocyclohexane

1.139(5)

S

XD

50

5,5-Dimethyl-2-nitroso-

 

 

 

 

 

 

3-phenylamino-2-cyclo-

1.337(2)x

 

118.3(1)x

 

 

 

hexen-1-one

1.301(2)

S

XD

51

1,5-Dinitro-3-nitroso-

1.316(4)y

 

113.4(3)y

 

 

 

1,3,5-triazacycloheptane

1.237(4)

S

XD

52

 

1.315(4)y

1.228(4)

114.6(3)y

 

 

 

2-Nitroso-2-azabicyclo-

1.353(4)y

 

113.4(4)y

 

 

 

(2.2.2)octan-3-one

1.227(5)

S

XD

46

trans-1,8-Dinitroso-

1.322(6)y

 

113.8(5)y

 

 

 

1,8-diazadecaline

1.222(6)

S

XD

53

 

1.306(5)y

1.242(5)

114.9(4)y

 

 

 

N-Nitroso-N-benzyl-

1.339(5)y

 

114.4(4)y

 

 

 

p-chloroaniline

1.237(5)

S

XD

54

p-Nitrosoanisole

1.467(10)x

1.228(8)

113.6(6)x

S

XD

55

p-Nitrosodiphenylamine

1.403(5)x

1.256(5)

112.8(3)x

S

XD

56

N-Nitrosodiphenylamine

1.344(5)y

1.206(7)

114.9(4)y

S

XD

57

Tetramethylammonium

1.357x

 

116.8x

 

 

 

benzonitrosolate

1.261

S

XD

58

 

1.351x

1.268

117.2x

 

 

 

1-4-Dinitrosopiperazine

1.336(4)y

1.202(4)

113.4(3)y

S

XD

59

a Three values are reported: two for molecules in the monoclinic form, and one for the orthorhombic one; x indicates C N bond; y indicates N N bond.

the nitrosoureas are significantly shorter and longer, respectively. Thus it appears45 that nitrosation of N-methyl-N0-nitroguanidine and N-methyl-N0 -cyanoguanidine modifies the electronic character of the guanidine system so that the C N N bonding system resembles that of nitrosamides.

a. 4-Nitrosodiphenylamine (C12H10N2O)56. The aromatic rings are planar, the dihedral angle between the two planes being 56.6°. An H bond is present between N(1) and O(1), of length 2.923(5) A˚ .

2. Structural chemistry

97

b.N-Nitrosodiphenylamine (C12H12N2O)57. The NDO bond length is 1.206 A˚ . Pauling in 1944 had predicted a value of 1.18 A˚ for this length but most of the values measured are greater, probably because of ionization or hybridization.

c.1,4-Dinitrosopiperazine (C4H8N4O2)59. The piperazine ring has a chair conformation and the two nitroso groups are in the anti form.

V. THE NITRO GROUP

Examination of the literature has brought to light the existence of about 4000 articles that make use of diffractometry.

Table 6 collects structural parameters for nitro groups.

TABLE 6. Structural parameters for some nitro compounds

Compound

C N

N O

<C N O

<O N O

State

Method

Reference

1,2-Difluorodi-

 

 

 

 

 

 

 

nitroethylene

1.476(5)

1.206(5)

119.8(3)

126.0(3)

S

XD

60

 

 

1.208(5)

114.2(3)

 

 

 

 

 

1.476(5)

1.208(5)

114.6(3)

127.0(3)

 

 

 

 

 

1.208(5)

118.4(3)

 

 

 

 

1,1-Diiododi-

 

 

 

 

 

 

 

nitroethylenea

1.454(10)

 

 

 

S

XD

61

 

1.494(10)

 

 

 

 

 

 

 

1.444(12)

 

 

 

 

 

 

 

1.473(11)

 

 

 

 

 

 

2-Methyl-2-nitro-

 

 

 

 

 

 

 

1,3-propanediol

1.506(4)

1.210(4)

117.4(3)

122.3(3)

S

XD

62

 

 

1.200(4)

120.3(3)

 

 

 

 

2-Bromo-2-nitro-

 

 

 

 

 

 

 

1,3-propanediol

 

1.540(8)

1.197(10)

 

S

XD

63

 

 

1.184(10)

 

 

 

 

 

2-Methyl-2,3,3-

 

 

 

 

 

 

 

trinitrobutane

1.554(5)

 

 

 

S

XD

64

 

1.549(4)

 

 

 

 

 

 

 

1.530(5)

 

 

 

 

 

 

1,4-Difluoro-1,1,4,4-

 

 

 

 

 

 

 

tetranitro-

 

 

 

 

 

 

 

2,3-butanediol

1.535

1.205

116

128

S

XD

65

 

 

1.209

116

 

 

 

 

 

1.540

1.203

117

126

 

 

 

 

 

1.206

116

 

 

 

 

 

1.542(8)

 

 

 

 

 

 

1,12-Dinitrodo-

 

 

 

 

 

 

 

decane

1.486(3)

1.208(3)

119.2(3)

122.1(3)

S

XD

66

1,10 -Dinitrobi-

 

1.208(3)

118.6(3)

 

 

 

 

 

 

 

 

 

 

 

cyclopentyl

1.641(4)

1.306(4)

116.8(3)

126.5(3)

S

XD

67

 

 

1.209(4)

116.7(3)

 

 

 

 

 

1.665(4)

1.329(4)

 

 

 

 

 

1,10 -Dinitrobi-

 

1.215(5)

 

 

 

 

 

 

 

 

 

 

 

 

cyclohexyl

1.551(2)

1.214(2)

118.2(1)

123.2(81)

S

XD

67

(continued overleaf )

98

 

Salvatore Sorriso

 

 

 

 

TABLE 6. (continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound

C N

N O

<C N O

<O N O

State

Method

Reference

1,10 -Dinitrobi-

 

1.212(2)

118.6(1)

 

 

 

 

 

 

 

 

 

 

 

cycloheptyl

1.551(9)

1.224(7)

117.8(7)

123.5(7)

S

XD

67

 

 

1.204(7)

118.7(7)

 

 

 

 

 

1.543(9)

1.214(7)

119.2(8)

123.5(8)

 

 

 

 

 

1.216(8)

117.3(7)

 

 

 

 

N-Methyl-p-

 

 

 

 

 

 

 

nitroaniline

1.434(4)

1.243(3)

118.0(3)

122.0(3)

S

XD

68

 

 

1.226(3)

120.0(3)

 

 

 

 

N,N-Diethyl-p-

 

 

 

 

 

 

 

nitroanilinea

1.437(4)

1.234(5)

118.7(3)

121.9(3)

S

XD

69

 

 

1.223(5)

119.4(3)

 

 

 

 

 

1.429(5)

1.221(5)

119.7(3)

121.7(4)

 

 

 

o-Nitroanilinea

 

1.231(5)

118.6(4)

 

 

 

 

 

 

 

 

 

 

 

( -modification)

1.490(20)

1.223(18)

114.2(12)

125.7(14)

S

XD

25

 

 

1.216(18)

120.0(13)

 

 

 

 

 

1.429(19)

1.248(169)

 

120.6(12)

 

 

 

 

 

1.223(16)

121(12)

 

 

 

 

m-Nitroaniline

1.467(4)

1.222(3)

119.7(2)

122.2(39)

S

XD

70

 

 

1.223(3)

118.1(3)

 

 

 

 

2-Methyl-4-

 

 

 

 

 

 

 

nitroaniline

1.422(3)

1.229(3)

119.9(2)

121.6(2)

S

XD

27

 

 

1.230(3)

118.6(2)

 

 

 

 

2-Methoxy-4-

 

 

 

 

 

 

 

nitroaniline

1.429(4)

1.221(3)

 

 

S

XD

71

 

 

1.234(4)

 

 

 

 

 

3,4-Dichloro-

 

 

 

 

 

 

 

nitrobenzene

1.486(8)

1.197(8)

118.4(6)

125.2(6)

S

XD

72

 

 

1.227(8)

116.4(5)

 

 

 

 

2,6-Dimethoxy-3-

 

 

 

 

 

 

 

nitrobenzoic acid

1.461(3)

1.187(3)

120.6(3)

121.4(3)

S

XD

73

 

 

1.199(3)

118.0(3)

 

 

 

 

Benzyl-4-nitro-

 

 

 

 

 

 

 

benzoate

1.470(2)

1.216(2)

118.2(1)

123.4(2)

S

XD

74

 

 

1.218(2)

118.4(1)

 

 

 

 

2-Pyridyl-4-

 

 

 

 

 

 

 

nitrobenzoate

1.470(4)

1.206(3)

118.6(2)

123.0(3)

S

XD

75

 

 

1.207(3)

118.4(2)

 

 

 

 

2-Amino-5-

 

 

 

 

 

 

 

nitrophenol

1.462(3)

1.228(3)

118.2(2)

122.6(3)

S

XD

16

 

 

1.221(3)

119.2(2)

 

 

 

 

o-Dinitrobenzene

1.472(3)

1.222(3)

 

 

S

XD

76

 

 

1.221(3)

 

 

 

 

 

p-Dinitrobenzene

1.478

1.218

117.9

124.5

S

XD

77

 

 

1.220

117.6

 

 

 

 

-4-Chloro-1,2-

 

 

 

 

 

 

 

dinitrobenzene

1.470(4)

1.220(3)

117.2(3)

125.5(3)

S

XD

78

 

 

1.230(3)

117.2(2)

 

 

 

 

 

1.481(4)

1.210(4)

118.0(3)

124.6(3)

 

 

 

 

 

1.225(4)

117.3(3)

 

 

 

 

ˇ-4-Chloro-1,2-

 

 

 

 

 

 

 

dinitrobenzene

1.478(11)

1.200(9)

116.8(8)

127.4(8)

S

XD

78

 

 

1.231(9)

115.8(8)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Structural chemistry

 

 

99

TABLE 6. (continued)

 

 

 

 

 

 

 

 

 

 

 

Compound

C N

N O

<C N O

<O N O State Method Reference

 

1.486(8)

1.208(88)

117.6(8)

125.7(7)

 

 

 

 

 

1.216(9)

116.6(7)

 

 

 

 

o-Dinitrotetra-

 

 

 

 

 

 

 

methylbenzene

1.469

1.2073

 

 

S

XD

79

 

 

1.2234

 

 

 

 

 

Methoxy-methoxy-

 

 

 

 

 

 

 

2,4-dinitro-

 

 

 

 

 

 

 

benzene

1.467(2)

1.223(2)

117.0(1)

124.5(1)

S

XD

80

 

 

1.211(2)

118.5(1)

 

 

 

 

 

1.460(2)

1.219(2)

117.9(1)

123.4(1)

 

 

 

 

 

1.219(2)

118.8(1)

 

 

 

 

1-Chloro-2,4-

 

 

 

 

 

 

 

dinitrobenzeneb

1.470(2)

1.218(2)

118.0(2)

125.1(2)

S

XD

81

 

 

1.220(2)

116.8(1)

 

 

 

 

 

1.477(2)

1.213(2)

116.9(2)

125.0(2)

 

 

 

 

 

1.224(2)

118.08(2)

 

 

 

 

1-Fluoro-2,4-

 

 

 

 

 

 

 

dinitrobenzene

1.481(8)

1.213(88)

117.5(7)

124.2(7)

S

XD

82

 

 

1.158(7)

118.3(7)

 

 

 

 

 

1.490(7)

1.212(6)

118.4(6)

123.5(6)

 

 

 

 

 

1.237(6)

118.2(6)

 

 

 

 

1,5-Difluoro-2,4-

 

 

 

 

 

 

 

dinitrobenzene

1.460(2)

1.226(2)

117.7(2)

123.6(2)

S

XD

83

 

 

1.227(3)

118.8(2)

 

 

 

 

 

1.464(2)

1.216(3)

118.7(2)

125.1(2)

 

 

 

 

 

1.234(4)

116.2(2)

 

 

 

 

1-Methoxy-

 

 

 

 

 

 

 

methoxy-3,5-

 

 

 

 

 

 

 

dinitrobenzene

1.474(4)

1.225(4)

117.7(3)

124.2(3)

S

XD

84

 

 

1.214(4)

118.1(3)

 

 

 

 

 

1.472(3)

1.212(4)

118.5(83)

123.6(3)

 

 

 

 

 

1.209(4)

117.9(3)

 

 

 

 

2,5-Dinitro-

 

 

 

 

 

 

 

benzoic acid

1.477

1.218

 

 

S

XD

85

 

 

1.223

 

 

 

 

 

 

1.471

1.212

 

 

 

 

 

 

 

1.215

 

 

 

 

 

3,5-Dinitro-

 

 

 

 

 

 

 

benzoic acid

1.472(3)

1.219(3)

117.6(2)

124.5(2)

S

XD

86

 

 

1.216(3)

117.9(2)

 

 

 

 

 

1.472(3)

1.214(3)

117.3(2)

123.7(2)

 

 

 

 

 

1.211(3)

119.0(2)

 

 

 

 

3,5-Diamino-

 

 

 

 

 

 

 

2,4,6-trinitro

 

 

 

 

 

 

 

benzoic acid

1.447(3)

1.223(2)

118.0(2)

121.5(2)

S

XD

24

 

 

1.234(2)

120.5(2)

 

 

 

 

 

1.439(2)

1.226(2)

119.9(2)

119.8(2)

 

 

 

 

1.239(3)

120.3(2)

 

 

 

 

 

 

1.451(3)

1.231(3)

120.5(2)

121.8(2)

 

 

 

 

 

1.225(3)

117.7(2)

 

 

 

 

3,5-Diamino-

 

 

 

 

 

 

 

2,4,6-trinitro

 

 

 

 

 

 

 

phenol

1.409(6)

1.240(6)

119.1(4)

117.9(4)

S

XD

23

(continued overleaf )

100

 

Salvatore Sorriso

 

 

 

 

TABLE 6. (continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound

C N

N O

<C N O

<O N O

State

Method

Reference

 

 

1.277(6)

123.0(4)

 

 

 

 

 

1.463(6)

1.208(5)

117.6(4)

124.1(4)

 

 

 

 

 

1.237(6)

118.2(4)

 

 

 

 

 

1.424(6)

1.247(6)

120.1(4)

119.9(4)

 

 

 

 

 

1.248(5)

120.0(4)

 

 

 

 

2,4-Dinitroaniline

1.442

1.250

119.7

121.4

S

XD

26

 

 

1.225

118.9

 

 

 

 

 

1.480

1.213

116.0

126.3

 

 

 

 

 

1.219

117.7

 

 

 

 

2,6-Dinitroaniline

1.451(2)

1.227(2)

119.8(3)

121.4(3)

S

XD

27

 

 

1.220(2)

118.8(3)

 

 

 

 

 

1.459(2)

1.222(2)

120.1(3)

121.4(3)

 

 

 

2-Nitroimidazolec

 

1.209(2)

118.5(3)

 

 

 

 

1.432(2)

1.235(2)

117.2(2)

125.1(2)

S

XD

87

 

 

1.226(2)

117.8(2)

 

 

 

 

4-Nitroimidazole

1.420(3)

1.229(2)

118.5(2)

123.0(2)

S

XD

88

 

 

1.227(3)

118.4(2)

 

 

 

 

2-Methyl-4-nitro-

 

 

 

 

 

 

 

imidazole

1.419(2)

1.224(3)

118.1(3)

123.3(3)

S

XD

89

 

 

1.220(2)

118.6(3)

 

 

 

 

3-Nitro-1,2,4-

 

 

 

 

 

 

 

triazole

1.449

1.216

117.7

124.7

S

XD

90

 

 

1.218

117.6

 

 

 

 

3-Amino-5-nitro-

 

 

 

 

 

 

 

1,2,4-triazole

1.447(2)

1.226(2)

118.8(2)

124.1(1)

S

XD

32

 

 

1.221(2)

118.2(1)

 

 

 

 

2,3-Dimethyl-5-

 

 

 

 

 

 

 

nitroindole

1.449(2)

1.215(2)

119.4(2)

121.5(2)

S

XD

91

 

 

1.241(2)

119.1(2)

 

 

 

 

2-Chloro-3,5-

 

 

 

 

 

 

 

dinitrothiophene

1.44(1)

1.23(1)

117.7(7)

124.8(9)

S

XD

92

 

 

1.21(1)

117.5(8)

 

 

 

 

 

1.43(1)

1.21(1)

117.4(7)

126.4(8)

 

 

 

 

 

1.24(1)

116.3(7)

 

 

 

 

2,5-Dimethyl-3,4-

 

 

 

 

 

 

 

dinitrothiophene

1.455(2)

1.211(3)

118.4(2)

123.9(2)

S

XD

93

 

 

1.212(3)

117.6(2)

 

 

 

 

 

1.445(2)

1.218(2)

117.9(2)

124.0(2)

 

 

 

 

 

1.221(2)

118.1(2)

 

 

 

 

1,4-Dinitroimidazole

1.441(3)

1.223(3)

117.0(2)

125.2(2)

S

XD

94

 

 

1.234(3)

117.8(2)

 

 

 

 

 

1.420(3)

1.214(3)

115.4(2)

129.3(2)

 

 

 

 

 

1.207(3)

115.4(2)

 

 

 

 

1,3-Dinitro-

 

 

 

 

 

 

 

naphthalene

1.462(4)

1.219(5)

117.8(3)

123.0(3)

S

XD

95

 

 

1.195(4)

118.9(3)

 

 

 

 

 

1.474(4)

1.205(3)

118.1(3)

124.1(3)

 

 

 

 

 

1.207(4)

117.7(3)

 

 

 

 

a There two molecules in the asymmetric unit. b Phase I.

c At 105 K.

2. Structural chemistry

101

a. trans-1,2-Difluorodinitroethylene61. One of the two nitro groups shows significant deviation from coplanarity with the rest of the molecule with the average value of the four torsion angles involving the C(1) N(1) bond being 14.3°. Similar averaging gives 0.6° for the other nitro group and 0.8° for the C(1) C(2) twist. The C N bond distances for both nitro groups are nearly identical (1.476 A)˚ . The C C double-bond distance is unusually short at 1.284 A˚ .

b.1,10 -Dinitrobicyclopentyl, 1,10 -dinitrobicyclohexyl and 1,10 -dinitrobicycloheptyl 67.

The five-membered rings adopt skew conformations and the molecule, a gauche conformation with an apparent N C C N torsion angle of 73.4°. Both NO2 groups are nearly coplanar with the central C C bond. In this conformation, the oxygen atoms, O(2) and O(2a), make close contacts with the methylene groups adjacent to the central

carbons. The conformation with both NO2 groups coplanar with the central C C bond is inherently more stable than a conformation where the NO2 groups are perpendicular to the central atoms, despite the expectation that the NO2 groups would tend to avoid each other to the maximum extent.

The cyclohexyl ring adopts a chair conformation characterized by the near-coplanarity of the atoms C(2), C(3), C(4) and C(6). Neither of the nitro groups deviate significantly from planarity.

The cycloheptyl rings adopt chair-like conformations characterized by the nearcoplanarity of atoms C(3), C(4), C(5) and C(6), which form the ‘back’ of the chair, and atoms C(2), C(3), C(6) and C(7), which form the ‘seat’ of the chair. Both nitro groups show small but only marginally significant tetrahedral distortions.

c.o-Dinitrobenzene76. The two nitro groups are twisted out of the mean plane of the benzene ring by angles of 41°. The overall conformation is clearly determined by the disposition of the two ortho nitro groups, which are rotated about the C N bonds in the same sense and to about the same amount. These rotations bring atoms O(2) and O(3)

into contact, the distance between them being about 2.77 A,˚ which is close to the standard van der Waals diameter of oxygen (2.8 A);˚ there are also close contacts between N(1) and N(2) (2.94 A)˚ . The two N atoms in o-DNB are displaced out of the ring plane by nearly equal opposite amounts. The angles N(1) C(1) C(2) and N(2) C(2) C(1) are larger than 120° by 1.4° and 1.8°, respectively, and so the two N atoms are slightly splayed apart to 2.94 A,˚ whereas the distance in a hypothetical planar molecule with 120° bond angles would be 2.85°.

VI. CONCLUSIONS

From the results published in the period reviewed in the present work there is no relevant novelty as regards the structure of amino, nitroso and nitro groups.

All evidence and comments reported previously1 remain altogether valid.

VII. ACKNOWLEDGEMENTS

We are indebted to Consiglio Nazionale delle Ricerche, Rome, and the Italian Minister for Universities for financial support.

We also acknowledge the valuable collaboration of Mrs Maria Gabriella Fabrizi and Mr Marco Pelliccia in preparing the manuscript and the drawings.

102

Salvatore Sorriso

VIII. REFERENCES

1.S. Sorriso, in The Chemistry of Amino, Nitroso and Nitro Compounds and Their Derivatives, Part 1 (Ed. S. Patai), Chap. 1, Wiley Interscience, Chichester, 1982.

2.S. Sorriso, in The Chemistry of Diazonium and Diazo Groups, Part 1 (Ed. S. Patai), Chap. 3, Wiley Interscience, Chichester, 1978.

3.A. K. Cheetham, in Solid State Chemistry: Techniques (Eds. A. K. Cheetham and P. Day), Chap. 2, Oxford Science Publications, 1987.

4.D. Mootz, D. Brodalla and M. Wiebcke, Acta Crystallogr., C45, 754 (1989).

5.C. S. Choi, Acta Crystallogr., B37, 1955 (1981).

6.F. L. Hirshfeld and H. Hope, Acta Crystallogr., B36, 406 (1980).

7.A. J. Bracuti, Acta Crystallogr., C42, 1887 (1986).

8.R. A. Bell, B. E. Brown, M. Duarte, H. E. Howard-Lock and C. J. Lock, Can. J. Chem., 65, 261 (1987).

9.D. Carlstrom, Acta Crystallogr., B31, 2185 (1975).

10.M. D. Morse and J. P. Chesick, Acta Crystallogr., B32, 954 (1976).

11.J. D. Dunitz and P. Strickler, Helv. Chim. Acta, 49, 2502 (1966).

12.C. Stalhandske,˚ Cryst. Struct. Commun., 10, 1081 (1981).

13.D. A. Dixon, J. C. Calabrese and J. S. Miller, Angew. Chem., Int. Ed. Engl., 28, 90 (1989).

14.S. Ashfaquzzaman and A. K. Pant, Acta Crystallogr., B35, 1394 (1979).

15.S. Kashino, M. Tomita and M. Haisa, Acta Crystallogr., C44, 730 (1988).

16.M. Haisa, S. Kashino and T. Kawashima, Acta Crystallogr., B36, 1598 (1980).

17.H. Takazawa, S. Ohba and Y. Saito, Acta Crystallogr., C42, 1880 (1986).

18.C. J. Brown and M. Ehrenberg, Acta Crystallogr., C41, 441 (1985).

19.C. D. G. Boone, J. L. Derissen and J. C. Schoone, Acta Crystallogr., B33, 3205 (1977).

20.J. Voogd, B. H. M. Verzijl and A. J. M. Duisenberg, Acta Crystallogr., B36, 2805 (1980).

21.C. -T. Lin, P. -Y. Siew and S. R. Byrn, J. Chem. Soc., Perkin Trans. 2, 957 (1978).

22.H. L. Ammon, S. K. Bhattacharjee and J. R. Holden, Acta Crystallogr., B38, 1851 (1982).

23.S. K. Bhattacharjee and H. L. Ammon, Acta Crystallogr., B37, 2082 (1981).

24.H. L. Ammon and S. M. Prasad, Acta Crystallogr., C41, 921 (1985).

25.N. N. Dhaneshwar, S. S. Tavale and L. M. Pant, Acta Crystallogr., B34, 2507 (1978).

26.L. Prasad, E. J. Gabe and Y. Le Page, Acta Crystallogr., B38, 674 (1982).

27.L. Park´anyi´ and A. Kalm´an,´ J. Mol. Struct., 125, 315 (1984).

28.S. Merlino and F. Sartori, Acta Crystallogr., B38, 1476 (1982).

29.G. Ploug-Sorensen and E. Krogh Andersen, Acta Crystallogr., C41, 613 (1985).

30.G. F. Lipscomb, A. F. Garito and R. S. Narang, J. Chem. Phys., 75, 1509 (1981).

31.M. Kubota and S. Ohba, Acta Crystallogr., B48, 849 (1992).

32.G. L. Starova, O. V. Frank-Kamenetskaya and V.V. Makarski, Acta Crystallogr., A34, S113 (1978).

33.E. Garcia and K. -Y. Lee, Acta Crystallogr., C48, 1682 (1992).

34.A. Kalm´an´ and G. Y. Argay, J. Mol. Struct., 102, 391 (1983).

35.D. D. Bray and J. G. White, Acta Crystallogr., B35, 3089 (1979).

36.A. Albinati, M. G. Marcon, P. Traldi and P. Cavoli, Acta Crystallogr., B37, 2090 (1981).

37.C. Caranoni and J. P. Reboul, Acta Crystallogr., B38, 1255 (1982).

38.H. Senda and J. Maruha, Acta Crystallogr., C43, 347 (1987).

39.C. H. Schwalbe, G. J. B. Williams and T. F. Koetzle, Acta Crystallogr., C43, 2191 (1987).

40.C. H. Schwalbe and G. J. B. Williams, Acta Crystallogr., B38, 1840 (1982).

41.S. K. Vohra, G. W. Harrington, D. E. Zacharias and D. Swern, J. Org. Chem., 44, 1128 (1979).

42.J. N. Varghese, A. M. O’Connell and E. N. Maslen, Acta Crystallogr., B33, 2102 (1977).

43.C. Krieger, H. Fischer and F. A. Neugebauer, Acta Crystallogr., C43, 1320 (1987).

44.S. Nordenson and J. Hvoslef, Acta Crystallogr., B37, 373 (1981).

45.S. Rice, M. Y. Cheng, R. E. Cramer, M. Mandel, H. F. Mower and K. Seff, J. Am. Chem. Soc., 106, 239 (1984).

46.K. Prout, J. Fail, S. Hernandez-Cassou and F. Ming Miao, Acta Crystallogr., B38, 2176 (1982).

47.K. Yamaguchi, G. Matsumura, M. Tanno, S. Sueyoshi and N. Miyata, Acta Crystallogr., C48, 1051 (1992).

48.H. W. Smith, A. Camerman and N. Camerman, J. Med. Chem., 21, 468 (1978).

49.Y. Kai, P. Knochel, S. Kwiatkowski, J. D. Dunitz, J. F. M. Oth, D. Seebach and H. O. Kalinowski,

Helv. Chim. Acta, 65, 137 (1982).

2. Structural chemistry

103

50.F. Ming Miao, D. Chantry, T. Harper and D. Crowfoot Hodgkin, Acta Crystallogr., B38, 3152 (1982).

51.G. Gilli, V. Bertolasi and A. C. Veronese, Acta Crystallogr., B39, 450 (1983).

52.M. Pickering, J. Rylance, R. W. Small and D. Stubley, Acta Crystallogr., B47, 782 (1991).

53.R. L. Willer, C. K. Lowe-Ma, D. W. Moore and L. F. Johnson, J. Org. Chem., 49, 1481 (1984).

54.K. Prout, P. Lowe and F. Ming Miao, Cryst. Struct. Commun., 11, 147 (1982).

55.H. J. Talberg, Acta Chem. Scand., 33, 289 (1979).

56.N. N. Dhaneshwar, S. N. Naik and S. S. Tavale, Acta Crystallogr., C47, 217 (1991).

57.A. Banerjee, C. J. Brown and J. F. Lewis, Acta Crystallogr., B38, 2744 (1982).

58.J. Kopf and G. Klar, Cryst. Struct. Commun., 8, 591 (1979).

59.K. Sekido, K. Okamoto and S. Hirokawa, Acta Crystallogr., C41, 741 (1985).

60.K. Baum, T. G. Archibald, D. Tzeng, R. Gilardi, J.L. Flippen-Anderson and C. George, J. Org. Chem., 56, 537 (1991).

61.K. Baum, S. S. Bigelow, N. V. Nguyen, T. G. Archibald, R. Gilardi, J. L. Flippen-Anderson and

C.George, J. Org. Chem., 57, 235 (1992).

62.H. E. Marr III, G. J. Kruger and J. M. Stewart, Acta Crystallogr., B33, 2886 (1977).

63.D. S. Sake Gowda and R. Rudman, J. Chem. Phys., 77, 4666 (1982).

64.S. Y. Lee, L. L. Koh, Y. L. Lam and H. H. Huang, Bull. Chem. Soc. Jpn., 65, 489 (1992).

65.C. Dickinson and J. R. Holden, Acta Crystallogr., B35, 487 (1979).

66.M. B. Hursthouse, R. L. Short, T. A. Ainscow, J. L. Henshall, R. M. Hooper and M. R. Belmont,

Acta Crystallogr., C44, 689 (1988).

67.Y. L. Lam, H. H. Huang and T. W. Hambley, J. Chem. Soc., Perkin Trans. 2, 2039 (1990).

68.T. W. Panunto, Z. Urbanczyk-Lipkowska, R. Johnson and M. C. Etter, J. Am. Chem. Soc., 109, 7786 (1987).

69.J. Maurin and T. M. Krygowski, J. Mol. Struct., 172, 413 (1988).

70.G. Ploug-Sørensen and E. Krogh Andersen, Acta Crystallogr., C42, 1813 (1986).

71.S. Mehdi, Acta Crystallogr., C48, 749 (1992).

72.S. Kumakura and Y. Kuroishi, Bull. Chem. Soc. Jpn., 56, 1541 (1983).

73.G. M. Frankenbach, D. Britton and M. C. Etter, Acta Crystallogr., C47, 553 (1991).

74.P. G. Jones, A. Dolle, A. J. kirby and J. K. Parker, Acta Crystallogr., C45, 234 (1989).

75.M. L. Glowka and I. Iwanicka, Acta Crystallogr., C46, 1342 (1990).

76.F. H. Herbstein and M. Kapon, Acta Crystallogr., B46, 567 (1990).

77.F. Di Renzo, A. Domenicano and L. Riva di Sanseverino, Acta Crystallogr., B36, 586 (1980).

78.A. Wilkins and R. W. H. Small, Acta Crystallogr., C41, 1509 (1985).

79.P. Sgarabotto, M. Braghetti, R. S. Cataliotti, G. Paliani, S. Sorriso, V. Caia and S. San tini, Can.

J.Chem., 65, 2122 (1987).

80.P. G. Jones, G. M. Sheldrick, R. Glenn and A. J. Kirby, Z. Kristallogr., 163, 85 (1983).

81.S. Sharma, N. Weiden and A. Weiss, J. Chem. Phys., 90, 483 (1989).

82.A. Wilkins and R. W. H. Small, Acta Crystallogr., C47, 220 (1991).

83.M. Kubota and S. Ohba, Acta Crystallogr., B48, 849 (1992).

84.P. G. Jones, G. M. Sheldrick, A. J. Kirby and A. J. Briggs, Acta Crystallogr., C41, 1377 (1985).

85.S. J. Grabowski and T. M. Krygowski, Acta Crystallogr., C41, 1224 (1985).

86.J. A. Kanters, J. Kroon, R. Hooft, A. Schouten, J. A. M. van Schijndel and J. Brandsen, Croat. Chem. Acta, 64, 353 (1991).

87.I. K. Larsen, Acta Crystallogr., C40, 285 (1984).

88.I. Segalas,´ J. Poitras and A. L. Beauchamp, Acta Crystallogr., C48, 295 (1992).

89.A. Kalm´an,´ F. van Meurs and J. Toth,´ Cryst. Struct. Commun., 9, 709 (1980).

90.G. Evrard, F. Durant, A. Michel, J. C. Fripiat, J. L. Closset and A. Copin, Bull. Soc. Chim. Belg., 93, 233 (1984).

91.G. Bocelli and C. Rizzoli, Acta Crystallogr., C45, 1180 (1989).

92.A. Mugnoli, D. Spinelli, G. Consiglio and R. Noto, J. Heterocycl. Chem., 25, 177 (1988).

93.A. Mugnoli, M. Novi, G. Guanti and C. Dell’Erba, Cryst. Struct. Commun., 7, 703 (1978).

94.M. R. Grimmett, S. -T. Hua, K. -C. Chang, S. A. Foley and J. Simpson, Aust. J. Chem., 42, 1281 (1989).

95.H. L. Ammon, Acta Crystallogr., C47, 2252 (1991).

Соседние файлы в папке Patai S., Rappoport Z. 1996 The chemistry of functional groups. The chemistry of amino, nitroso, nitro and related groups