Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Аверянов Современная информатика 2011

.pdf
Скачиваний:
113
Добавлен:
16.08.2013
Размер:
6.43 Mб
Скачать

Рис. 2.8. Принцип работы магнитооптического устройства

В этих устройствах считывающая (записывающая) головка значительно удалена от поверхности диска. Они могут быть представлены и в виде магнитооптических библиотек с автоматической сменой большого количества дискет, общая емкость которых достигает очень больших величин.

К 2007 г. выпускалось два типа устройств магнитооптики с размером носителя 5,25 дюйма с максимальной емкостью 19 Гбайт и 3,5 дюйма с максимальной емкостью 2,3 Гбайт. Минимальное время доступа (поиска) в обоих типах – 19 мс. По емкости, быстродействию, надежности у магнитооптики нет равных (на указанный пе-

61

риод времени) среди устройств хранения со сменными носителями данных.

Магнитооптические носители выдерживают огромное количество циклов перезаписи, не чувствительны к внешним магнитным полям и радиации, гарантируют сохранность информации в течение полусотни лет. Именно поэтому эти устройства применяются тогда, когда предъявляются повышенные требования к объемам и надежности хранения данных (неслучайно, библиотека Конгресса США оборудована магнитооптическими устройствами).

3б. Оптические накопители. Оптические диски по принципу работы очень близки к магнитооптике (правда, поверхность, на которой хранится информация, не является магнитной).

Оптические диски относятся к устройствам хранения информации со сменными носителями (так же, как и магнитная лента, НГМД и т.д.).

Первый оптический диск CD-ROM появился в 1984 г. Первоначально выпускалось два формата CD-DA (Digital Audio) и CDROM. Запись осуществлялась так же, как и на всех дисках, – на концентрических дорожках в виде небольших углублений – вдоль дорожек – ямок (ямка – 1, гладкая поверхность – 0). Изготовление производилось штамповкой. С помощью таких дисков происходило распространение фирменного программного продукта или аудиоинформации. Считывание осуществлялось с помощью луча лазера, который, отражаясь от плоского участка диска, оказывался в противофазе с падающим лучом, а интенсивность результирующего (отраженного) луча близка к нулю (нулевые биты). При отражении от ямки луч проходит 1/2 длины волны, оказывается в фазе с падающим лучом и усиливает его (единичные биты), что и фиксируется фотодетектором. С начала своего использования и до последнего времени CD-ROM интенсивно развивались. Емкость их достигла 700 Мбайт, скорость считывания – 9 Мбайт/с (при скорости вращения до 12000 об./мин). При этом значительное удаление головки от поверхности диска существенно повышает его надежность. Правда, на сегодняшний день (после 2000 г.) он уже не в состоянии конкурировать с приближающимся к нему по цене DVDROM.

Первый записывающий диск с однократной записью (WORM – Write Once Read Many) CD-R (Recordable) был выпущен фирмой

62

Philips в 1993 г. В качестве «болванок» использовались обычные (как и для CD-ROM) поликарбонатовые диски, покрытые специальным красителем (цианиновым, фталоцианиновым или азокрасителем), на поверхность которого напыляется тончайших слой отражающего благородного металла (обычно чистого серебра или золота). При записи сфокусированный лазерный луч физически выжигает отражающую поверхность, и слой красителя образует непрозрачные участки, аналогичные ямкам в обычном штампованном CD. Развитие этих устройств в сторону многократной записи привело к появлению CD-WARM (Write And Read Many times).

Развитмие этих устройств в сторону многократной записи привело

кпоявлению CD-RWARM (Write And Read Many times).

ВCD-RW активным слоем является специальный поликристаллический сплав (серебро-индий-сурьма-теллур), который перехо-

дит в жидкое состояние при сильном нагреве (500 – 700 °С) лазером. При последующем быстром остывании жидких участков они остаются в аморфном состоянии, поэтому их отражающая способность отличается от поликристаллических участков. Возврат аморфных участков в кристаллическое состояние осуществляется путем более слабого нагрева – ниже точки плавления, но выше точки кристаллизации (~ 200 °С). Выше и ниже активного слоя располагаются два слоя диэлектрика (обычно диоксид кремния), отводящие от активного слоя лишнее тепло в процессе записи. Сверху все это прикрыто отражающим слоем, а весь «сэндвич» нанесен на поликарбонатовую основу, в которой выпрессованы специальные углубления. В накопителе CD-RW используются три режима работы лазера, отличающиеся мощностью луча: режим записи (максимальная мощность, обеспечивающая переход активного слоя в неотражающее, аморфное состояние); режим стирания (возвращает активный слой в отражающее, кристаллическое состояние); режим чтения – самая низкая мощность (не влияющая на состояние активного слоя).

Максимально достижимая емкость дисков CD – 650 – 700 Мбайт. Невозможность дальнейшего увеличения ресурса (по емкости) этих дисков привели к появлению дисков DVD.

Первоначально этот диск должен был прийти на смену видеокассет и расшифровывался как Digital Video Disk, т.е. цифровой диск. В дальнейшем этот формат стал применяться в вычислительной тех-

63

нике, и его название поменялось на Digital Versatile Disk – цифровой многофункциональный диск. В 1995 г. появился единый стандарт, состоящий из пяти разновидностей: DVD-ROM; DVD-Video; DVDAudio; DVD-R и DVD-RAM. Два последних стандарта в дальнейшем были преобразованы в DVD-RW; DVD+RW и DVD+R.

Каким же образом удалось значительно (в 7 – 25 раз) увеличить объем диска?

Во-первых, вместо инфракрасного (ИК) лазера с длиной волны 780 нм был применен лазер красного диапазона 650 нм. При этом произошло уменьшение размера (диаметра) углублений с 0,83 до 0,4 нм. Вследствие этого шаг дорожек уменьшился с 1,6 до 0,74 нм. Это привело к увеличению емкости диска в 4,5 раза.

Во-вторых, были разработаны двухслойные диски (материал первого отражающего слоя является полупрозрачным), это дает возможность увеличить емкость еще почти в 2 раза.

В-третьих, были разработаны двухсторонние диски, что позволило еще в два раза увеличить общую емкость дисков (правда, диск приходится переворачивать вручную). Возможны четыре варианта дисков DVD: односторонний, однослойный – 4,7 Гбайт; односторонний, двухслойный – 8,5 Гбайт; двухсторонний, однослойный – 9,4 Гбайт и двухсторонний, двухслойный – 17 Гбайт.

Основное направление развития индустрии оптических дисков связано с использованием лазера сине-фиолетового диапазона с длиной волны 405 нм. К настоящему времени преодолены основные трудности и ряд фирм (прежде всего, Sony) приступили к серийному выпуску Blu-Ray Disc. На носителе формата 5,25 дюйма выпускаются дискисемкостью 23,3 Гбайт/25 Гбайт/27 Гбайт/50 Гбайт/100 Гбайт.

При большой емкости и высокой надежности слабым местом этих устройств является большое время доступа (десятки и даже сотни миллисекунд).

И в заключение обзора устройств внешней памяти необходимо отметить, что сравнительно недавно и достаточно неожиданно появились электронные устройства внешней памяти USB Flash носителями и популярность их растет, а причин тому несколько. Прежде всего– это постоянно снижающаяся розничная цена при постоянно повышающейся емкости (2008 г. – 32 Гбайт). Вторая причина связана с широким распространением стандарта USB. Все современные материнские платы имеют встроенные USB-порты, а в компьютерных корпусах эти

64

порты чаще выносятся на лицевую панель, обеспечивая легкость подключения любой периферии. И третья причина – это удобство флэшпамяти. Они легкие, малогабаритные, не подвержены влиянию магнитных полей, терпимы к температурным перепадам и механическим воздействиям, их носители не подвержены износу и информация на них может храниться очень долго. Область их применения пока достаточно узка. Они служат для хранения и переноса информации между компьютерами. Дляболеесерьезныхфункцийони(пока) не используютсяиз- занизкойскоростиUSB-порта(1,5 Мбайт/с).

Печатающие устройства. Они служат для вывода программ, данных и результатов обработки на бумажную ленту различной ширины, а также на отдельные листы бумаги. Было разработано большое количество разнообразных устройств печати, применяемых для различных классов компьютеров (рис. 2.9), большая часть из которых в настоящее время уже не используется.

Устройства ударного действия сравнительно дешевы, позволяют изготавливать несколько копий, качество печати вполне удовлетворительное для традиционных применений компьютеров. К недостаткам этих устройств относят повышенный уровень шума и сравнительно невысокую надежность. На больших компьютерах наибольшее распространение в свое время получили высокоскоростные ал- фавитно-цифровые печатающие устройства (АЦПУ). Скорость печати этих устройств от 600 до 1800 строк в минуту, они относятся к построчно-печатающим устройствам параллельного действия. Знаконоситель в этих устройствах – литерный, обычно вращающийся с высокой скоростью цилиндрический барабан (может быть шаровой или ленточный носитель литер). Устройство содержало ряд ударных механизмов, равных количеству знаков в строке (длине барабана), а также буферное запоминающее устройство, хранящее информацию об одной строке. На малых компьютерах применялись рычажнолитерные и знакосинтезирующие устройства последовательного действия, в которых печатающий узел последовательно знак за знаком пробегает строку. Эти устройства имели невысокую скорость печати, малые размеры и стоимость, так как, во-первых, использовалась кинематика телетайпа (пишущей машинки), а во-вторых, изображение знака создавалось игольчатой матрицей, содержащей 5х7 или 7х9 точек.

65

 

 

 

 

 

 

ПЕЧАТАЮЩЕЕ УСТРОЙСТВО

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ударного действия

 

 

 

 

Безударного действия

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Электроэррозионные

Последовательного дейст-

 

 

Параллельного действия

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Термические

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Знакопечатающие

 

 

 

Знакосинтезирующие

 

 

 

 

 

 

 

 

 

 

 

 

Феррографические

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Электрографические

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Струйные

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Другие

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 2.9. Разновидности печатающих устройств

В настоящее время подобные принтеры используются при печати «под копирку»: на специализированных бланках «строгой отчетности», в некоторых банковских системах и т.п., когда необходимо четко идентифицировать, что данная копия документа была сделана именно с данного оригинала.

Принтеры безударного действия лишены многих недостатков ударных. Наибольшей популярностью в настоящее время пользуются лазерные (электрооптические) и струйные принтеры. Они обладают очень высокой скоростью печати, очень высоким качеством и надежностью. Лазерные принтеры обладают большей скоростью печати, надежностью и дешевле в обслуживании, хотя сами принтеры стоят дороже. Применяются для печати большого количества текстов, документов, для коллективного использования в различных организациях. Струйные принтеры существенно более компактные, обладают меньшим энергопотреблением, позволяют получить выше качество при печати фотографий и других цветных изображений, а также, в отличие от лазерных принтеров, при печати не нагревают носитель. Применяются, как правило, для домашнего использования, а также для специализированной печати цветных изображений единичными тиражами: фотографий, буклетов, для печати на компакт-дисках.

Печатающие устройства, получившие широкое распространение

вперсональных компьютерах, применяются и для изготовления графических изображений (в том числе и цветных), предварительно созданных на экране графического дисплея. Правда, эти устройства принципиально отличаются от традиционных графопостроителей (плоттеров), поскольку пишущий узел последовательно пробегает всю поверхность бумаги строчку за строчкой, оставляя след

вместах копируемого изображения (бумага перемещается только в одном направлении). Скорость изготовления рисунка невысока.

Можно выделить два вида таких устройств.

1.Устройства графического вывода. К ним относятся коорди-

натографы и графопостроители планшетного и рулонного типа. В этих устройствах пишущий узел двигается непосредственно по линии изображения под управлением последовательности команд и программного обеспечения графического вывода. Графопостроители ориентированы на изготовление чертежей различного формата, координатографы обладают несколько более высокой точностью и

67

могут применяться для гравировки и изготовления печатных плат (при этом пишущий узел заменяется резцом).

2. Устройства ввода графической информации. Это планшет-

ные устройства (дигитайзеры), обеспечивающие считывание, т.е. распознавание графических элементов (точка, линия, элементарный фрагмент) и их кодирование – преобразование в цифровой код по установленным правилам.

По степени участия человека в процессе считывания устройства ввода графической информации разделяют на автоматические и полуавтоматические. В связи с расширением сферы использования персональных компьютеров различные фирмы освоили производство автоматических и ручных устройств, предназначенных для ввода изображений (в том числе и цветных) или текстов без использования клавиатуры – сканеров. Стоимость их высока.

Дисплеи. Дисплеи относятся к периферийным интерактивным устройствам, являясь основным средством общения человекапользователя с компьютером. Под дисплеем следует иметь ввиду три функционально различных устройства – монитор, предназначенный для вывода информации из компьютера, различные устройства для ввода информации и графические адаптеры, которые уже давно вышли за рамки своих прямых функций вывода на экран монитора подготовленного процессором изображения, став графическими ускорителями, выполняя операции по обработке графики, включая расчетные функции. Таким образом, адаптеры, забрав часть функций ЦП, превратились в высокоскоростные графические процессоры. Очень высокая скорость вывода информации (включая графическую), удобной для восприятия человеком, и возможность оперативного вмешательства в процесс решения задачи сделали дисплей незаменимым устройством для общения с компьютером. Мониторы являются важнейшей частью графической системы. Качество изображения является ключевым фактором (хотя и не единственным), которое определяется выбранным типом монитора.

В качестве мониторов в компьютерах до последнего времени применяются два типа устройств. Это традиционные мониторы на базе электронно-лучевых трубок (ЭЛТ), которые для получения изображения используют принцип телевизионного растра, вторыми являются устройства, использующие плоские панели. Плоские панели, или экраны матричного типа, могут основываться на разных

68

технологиях: жидкокристаллической, плазменной (газоразрядной), твердотельной, автоэлектронно-эмиссионной и др. Все они сейчас активно развиваются, но в массовых масштабах в компьютерной области применяется только одна их разновидность – жидкокри-

сталлические (ЖК, LCD – Liguid Crystal Display)*.

ЖК-технологии не являют собой что-то однородное, скорее всего это конгломерат решений, объединенный общим принципом. Можно рассматривать разнообразие актуальных подходов как свидетельство интенсивного развития этой области.

В течение ряда лет, начиная с 2000 г., развитие компьютерных мониторов проходило в виде скрытого или явного соревнования этих двух основных технологий. Если до 2000 г. ЭЛТ были вне конкуренции, то затем ситуация стала резко меняться.

Среди основных недостатков ЭЛТ являются следующие: относительная громоздкость, особенно при экранах большого размера – 17 дюймов и выше, глубина монитора становится соизмеримой с размером экрана, и второй недостаток, который стал более заметен

всвязи с появлением плоских панелей, – не плоский экран. Правда, даже такие консервативные элементы, как ЭЛТ постоянно совершенствуются. Экраны становятся более плоскими, повышается яркость и контрастность изображения, уменьшаются габариты, снижается энергопотребление. Хотя следует отметить, что серьезных

*Жидкие кристаллы были открыты в 1888 г. австрийским ботаником (ученым, занимающимся флорой) Фридрихом Рейницером в процессе изучения значения холестерина в растениях. Он выделил некоторое вещество, странным образом ведшее себя при нагревании, – оно мутнело и начинало течь раньше, чем обращалось в темную жидкость. Субстанцию с секретом Рейницер вручил германскому физику Отто Леману, который обнаружил у нее еще одну необычность. Жидкость

всвоих оптических свойствах вела себя как кристалл. Так, в науку вошло гранди-

озное изобретение под названием «жидкий кристалл». ЖК – так называемая метаморфоза, состояние между твердым и изотропным состояниями вещества: оно и текущее, и сохраняет порядок расположения молекул; состояние в некоторых случаях устойчиво в большом диапазоне температур. По тем временам изобретение оказалось совершенно бесполезное на практике.

Текучее вещество впервые пристроили к делу через 80 лет после его открытия: компания RCA (Radio Corporation of America) произвела на свет первый в мире функционирующий дисплей.

Во второй половине 70-х годов (1970 г.) ЖК-технология начала активно внедряться в портативных устройствах – главным образом, калькуляторах и цифровых часах.

69

технологических прорывов в этом классе мониторов (которые имеют длительную историю) ожидать не приходится.

Плоские панели имеют целый ряд потребительских качеств, делающих их особенно привлекательными:

абсолютно плоский экран; отсутствие геометрических искажений;

высокая яркость (у плазменных-газоразрядных); малая глубина, компактность; очень низкий уровень электромагнитных излучений.

Основным недостатком ЖК-мониторов на начальном этапе их развития была их стоимость, в связи с чем они применялись только в ноутбуках. Однако, начиная с 1999 г., в производство ЖК-панелей были вложены огромные инвестиции, что привело к улучшению их качества и значительно снизило цену. Так, если в 2000 г. доля мониторов на ЖК-панелях в общем объеме выпуска составляла 5 %, то к 2006 г. составила 30 %. По данным Stanford Resourses, по объему производства мониторы с ЭЛТ в 2001 г. превзошли ЖК-мониторы более, чем в 2 раза. К 2006 г. соотношение изменилось на обратное.

Справедливости ради, необходимо отметить, что пока мониторы с ЭЛТ все еще лучше справляются с динамическим изображением компьютерных игр и видеомониторов. Кроме того, в силу менее точной цветопередачи фиксированным и, как правило, не слишком высоким экранным разрешением* ЖК-дисплеев мониторы с ЭЛТ используются для профессиональной работы с графикой (правда, в данном случае речь об экономии не идет вовсе) и если ситуация с разрешением ЖК-мониторов меняется в лучшую сторону, то о тонкой настройке цветовой температуры у них говорить не приходится.

Однако в отличие от ЭЛТ, где улучшение характеристик происходит благодаря постепенному совершенствованию технологий, развитие плоских индикаторов происходит нередко скачкообразно, благодаря появлению совершенно новых, перспективных технологий.

* Качество изображения принято оценивать по числу пикселов на один дюйм. Пиксель (сокращенно от слов picture cell) – элемент изображения представляет собой единицу измерения разрешения экрана (монитора) или печатного изображения и соответствует отдельной светящейся точке, цветом и яркостью которой можно управлять. Для оценки качества изображения введена единица под названием dpi-dots per inch – количество пикселей на один дюйм.

70