Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Advanced Wireless Networks - 4G Technologies

.pdf
Скачиваний:
52
Добавлен:
17.08.2013
Размер:
21.94 Mб
Скачать

358 MOBILITY MANAGEMENT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8R

 

 

 

 

 

 

 

 

 

 

 

sin

 

 

 

β2 ω2

 

sin

 

β1 ω1

 

 

 

 

 

 

 

 

 

(ω2 ω1)(β2 β1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin

 

β2 ω1

+

sin

β1 ω2

 

 

 

 

 

β

1

ω

2

 

 

 

 

 

 

 

=

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

(11.60)

 

 

 

 

 

 

 

 

 

 

 

 

8R

 

 

 

 

 

 

 

 

 

 

 

sin

 

 

 

ω1 β2

 

sin

 

ω1 β1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ω2 ω1)(β2 β1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin

 

ω2 β1

+

sin

ω2 β1

 

 

 

 

 

β

2

ω

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 3: |ψ1/2| < ψ2/2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

Y

(y

|

β)

=

f

(y

|

β)

+

f (y

 

|

β)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(11.61)

 

 

 

Y

 

 

 

 

 

Y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y < 2R cos

ψ2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y

 

|

 

=

 

 

 

 

 

2arc cos

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

ψ2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

(y

 

β)

 

 

1

 

 

 

 

 

 

 

 

 

ψ1

,

2R cos

 

 

 

 

 

 

y 2R

(11.62)

 

 

 

 

 

 

 

 

 

 

 

ψ2 ψ1

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

1,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y > 2R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y < 2R cos

ψ2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y

 

|

 

=

 

 

 

 

 

2arc cos

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

ψ2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

(y

 

β)

 

 

1

 

 

 

 

 

 

 

 

 

ψ1

,

2R cos

 

 

 

 

 

 

y 2R

(11.63)

 

 

 

 

 

 

 

 

 

 

 

ψ2 ψ1

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

1,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y > 2R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The PDF of y is

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

Y

(y

|

β)

=

f

 

(y

|

β)

+

f (y

 

|

β)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(11.64)

 

 

 

 

Y

 

 

 

 

 

Y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

,

 

2R cos

 

ψ2

 

y 2R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

f

 

(y

|

β)

=

 

 

(ψ2

ψ1) R

2

 

y

2

 

 

 

(11.65)

 

 

Y

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

elsewhere

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

,

 

2R cos

 

ψ1

 

 

y

2R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

f

(y

|

β)

=

 

 

(ψ2

ψ1) R

2

 

y

2

 

 

 

 

 

(11.66)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

elsewhere

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX: DISTANCE CALCULATION IN AN INTERMEDIATE CELL

359

The mean distance E[Y | β] is

 

 

2R

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y ·

 

 

 

 

 

 

 

 

 

 

 

 

dy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2R cos(ψ2/2)

(ψ2 ψ1)

R2

y

2

 

 

 

 

 

 

 

 

 

 

E[Y | β] =

 

2

(11.67)

 

2R

 

 

 

 

 

 

1

 

 

+

 

y

·

 

 

 

 

 

 

 

 

 

dy

 

 

 

 

 

(ψ2 ψ1)

 

R2

 

y 2

 

 

 

2R cos(ψ1/2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

=

 

4R

 

sin

 

 

ψ2

sin

 

ψ1

 

 

(11.68)

 

ψ2 ψ1

 

2

2

 

 

The mean distance E [Y ] for cell id(m, i, j) for a mobile path entering cell i from cell m and exiting cell i to cell j is

β2

d (m, i, j) = E [Y ] = E[Y | β] fβ (β) dβ

 

 

 

 

 

 

 

 

 

 

β1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

β2

 

1

 

 

 

 

 

 

 

4R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

·

 

 

 

 

sin

ψ2

 

sin

 

ψ1

 

 

 

 

 

 

 

 

 

β1

β2 β1

 

ψ2 ψ1

 

2

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8R

 

 

 

 

 

 

 

 

 

sin

 

 

β2 ω2

 

sin

 

 

β1 ω1

 

 

 

 

 

 

 

(ω2 ω1)(β2 β1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

sin

 

 

 

β2 ω1

 

 

+

sin

 

β1 ω2

 

 

 

 

 

β

1

ω

2

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8R

 

 

 

 

 

 

 

 

 

sin

 

 

ω1 β2

 

sin

 

 

ω1 β1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ω2 ω1)(β2 β1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

sin

 

 

 

ω2 β1

 

 

+

sin

 

ω2 β1

 

 

 

 

 

β

2

ω

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 4: |ψ1/2| < ψ2/2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

(y

|

β)

=

F (y

|

β)

+

F (y

|

β)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y

 

 

Y

 

 

 

 

 

Y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ψ1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y < 2R cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y

 

|

 

=

 

 

 

2arc cos

 

 

y

 

 

 

 

 

 

 

 

 

 

ψ2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

(y

β )

 

1

 

 

 

 

 

 

 

 

ψ1

2R cos

 

 

 

 

 

 

 

y 2R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ψ2 ψ1

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

1,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y > 2R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(11.69)

(11.70)

(11.71)

(11.72)

360 MOBILITY MANAGEMENT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y < 2R cos

 

 

ψ1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F (y

|

β)

=

 

 

 

 

 

2arco cos

 

 

y

 

ψ1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(11.73)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ψ2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y

 

 

 

1

 

 

 

 

 

 

 

 

 

 

,

 

2R cos

 

 

 

 

y 2R

 

 

 

 

 

 

 

 

 

 

ψ2 ψ1

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

1,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y > 2R

 

 

 

 

 

 

 

 

 

The PDF of y is

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

Y

(y

|

β)

=

f

 

(y

|

β)

+

f (y

|

β)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(11.74)

 

 

 

Y

 

 

 

Y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

,

 

2R cos

 

ψ1

 

y

2R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

f

 

(y

|

β)

=

 

(ψ2

ψ1) R

2

 

y

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(11.75)

 

Y

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

elsewhere

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

,

 

2R cos

 

ψ2

 

y 2R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

f

 

(y

|

β)

=

 

(ψ2

ψ1) R

2

 

y

2

 

 

 

 

(11.76)

 

Y

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

elsewhere

 

 

 

 

 

 

 

 

 

The mean distance E [Y |β ] is

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

·

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

y 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2R cos(ψ1/2)

 

 

(ψ2 ψ1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E[Y | β] =

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

(11.77)

 

 

 

 

 

 

2R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

y ·

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ψ2 ψ1)

 

R2

 

y 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2R cos(ψ2/2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

4R

 

sin

ψ2

sin

ψ1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(11.78)

 

 

 

 

 

 

 

 

ψ2 ψ1

2

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mean distance E[Y ] for cell id(m, i, j) for a mobile path entering cell i from cell m and exiting cell i to cell j is

β2

d(m, i, j) = E[Y ] = E[Y | β] fβ (β) dβ

 

β1

 

 

 

 

 

 

 

(11.79)

 

β2

 

 

 

 

 

 

 

 

1

 

4R

 

 

 

 

 

=

 

·

sin

ψ2

sin

ψ1

β1

β2 β1

ψ2 ψ1

 

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 361

 

 

8R

 

 

sin

 

β2 ω2

sin

 

β1 ω1

 

(ω2 ω1)(β2 β1)

 

 

 

 

 

2

 

 

 

 

2

 

 

 

 

sin

β2 ω1

+

sin

β1 ω2

 

β

1

ω

2

 

=

 

2

 

 

 

2

 

 

 

 

 

 

 

8R

 

 

 

 

 

 

 

 

 

 

 

 

 

(11.80)

 

 

 

 

sin

 

ω1 β2

sin

 

ω1 β1

 

(ω2 ω1)(β2 β1)

 

 

 

 

 

 

2

 

 

 

 

2

 

 

 

 

sin

ω2 β1

+

sin

ω2 β1

 

β

2

ω

1

 

 

 

2

 

 

 

2

 

 

 

 

 

 

REFERENCES

[1]A. Acampora, Wireless ATM: A perspective on issues and prospects, IEEE Person. Commun., vol. 3, 1996, pp. 8–17.

[2]A. Acampora, An architecture and methodology for mobile-executed handoff in cellular ATM networks, IEEE J. Select. Areas Commun., vol. 12, 1994, pp. 1365–1375.

[3]A. Acharya, J. Li, F. Ansari and D. Raychaudhuri, Mobility support for IP over wireless ATM, IEEE Commun. Mag., vol. 36, 1998, pp. 84–88.

[4]A. Acharya, J. Li, B. Rajagopalan and D. Raychaudhuri, Mo-bility management in wireless ATM networks, IEEE Commun. Mag., vol. 35, 1997, pp. 100–109.

[5]I.F. Akyildiz, J. McNair, J.S.M. Ho, H. Uzunalioglu and W. Wang, Mobility management in current and future communication networks, IEEE Network Mag., vol. 12, 1998, pp. 39–49.

[6]I.F. Akyildiz and J.S.M. Ho, On location management for personal communications networks, IEEE Commun. Mag., vol. 34, 1996, pp. 138–145.

[7]I.F. Akyildiz, J.S.M. Ho and Y.B. Lin, Movement-based location update and selective paging for PCS networks, IEEE/ACM Trans. Networking, vol. 4, 1996, pp. 629–636.

[8]I.F. Akyildiz and J.S.M. Ho, Dynamic mobile user location update for wireless PCS networks, ACM-Baltzer J. Wireless Networks, vol. 1, no. 2, 1995, pp. 187–196.

[9]B. Akyol and D. Cox, Re-routing for handoff in a wireless ATM network, IEEE Personal Commun., vol. 3, 1996, pp. 26–33.

[10]V. Anantharam, M.L. Honig, U. Madhow and V.K. Wei, Optimization of a database hierarchy for mobility tracking in a personal communications network, Performance Eval., vol. 20, no. 1–3, 1994, pp. 287–300.

[11]E. Ayanoglu, K. Eng and M. Karol, Wireless ATM: Limits, challenges, and proposals, IEEE Personal Commun., vol. 3, 1996, pp. 19–34.

[12]A. Bar-Noy, I. Kessler and M. Sidi, Topology-based tracking strategies for personal communication networks, ACM-Baltzer J. Mobile Networks and Applications (MONET), vol. 1, no. 1, 1996, pp. 49–56.

[13]A. Bar-Noy, I. Kessler, and M. Sidi, Mobile users: to update or not to update? ACMBaltzer J. Wireless Networks, vol. 1, no. 2, 1995, pp. 175–186.

[14]S. Dolev, D.K. Pradhan and J.L. Welch, Modified tree structure for location management in mobile environments, Comput. Commun., vol. 19, no. 4, 1996, pp. 335– 345.

362 MOBILITY MANAGEMENT

[15]F. Dosiere, T. Zein, G. Maral and J.P. Boutes, A model for the handover traffic in low earth-orbiting (LEO) satellite networks for personal communications, Int. J. Satellite Commun., vol. 11, 1993, pp. 145–149.

[16]N. Efthymiou, Y.F. Hu and R. Sheriff, Performance of inter-segment handover protocols in an integrated space/terrestrial-UMTS environment, IEEE Trans. Veh. Technol., vol. 47, 1998, pp. 1179–1199.

[17]E. Guarene, P. Fasano and V. Vercellone, IP and ATM integration perspectives, IEEE Commun. Mag., vol. 36, 1998, pp. 74–80.

[18]J.S.M. Ho and I.F. Akyildiz, Dynamic hierarchical data-base architecture for location management in PCS networks, IEEE/ACM Trans. Networking, vol. 5, no. 5,1997,

pp.646–661.

[19]J.S.M. Ho and I.F. Akyildiz Local anchor scheme for reducing signaling cost in personal communication networks, IEEE/ACM Trans. Networking, vol. 4, no. 5, 1996,

pp.709–726.

[20]J.S.M. Ho and I.F. Akyildiz, A mobile user location update and paging mechanism under delay constraints, ACM-Baltzer J. Wireless Networks, vol. 1, no. 4, 1995,

pp.413–425.

[21]D. Hong and S. Rappaport, Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and nonprioritized handoff procedures, IEEE Trans. Veh. Technol., vol. 35, 1986, pp. 77–92.

[22]L.-R. Hu and S. Rappaport, Adaptive location management scheme for global personal communications, in Proc. IEEE Communications, vol. 144, no. 1, 1997, pp. 54–60.

[23]C.-L. I, G.P. Pollini and R.D. Gitlin, PCS mobility manage-ment using the reverse virtual call setup algorithm, IEEE/ACM Trans. Networking, vol. 5, 1997, pp. 13–24.

[24]R. Jain and Y.B. Lin, An auxiliary user location strategy employing forwarding pointers to reduce network impact of PCS, ACM-Baltzer J. Wireless Networks, vol. 1, no. 2, 1995, pp. 197–210.

[25]R. Jain, Y.B. Lin and S. Mohan, A caching strategy to reduce network impacts of PCS, IEEE J. Select. Areas Commun., vol. 12, 1994, pp. 1434–1444.

[26]D. Johnson and D. Maltz, Protocols for adaptive wireless and mobile networking, IEEE Personal Commun., vol. 3, 1996, pp. 34–42.

[27]S.J. Kim and C.Y. Lee, Modeling and analysis of the dynamic location registration and paging in microcellular systems, IEEE Trans. Veh. Technol., vol. 45, 1996, pp. 82–89.

[28]P. Krishna, N. Vaidya, and D.K. Pradhan, Static and adaptive location management in mobile wireless networks, Comput. Commun., vol. 19, no. 4, 1996, pp. 321–334.

[29]B. Li, S. Jiang and D. Tsang, Subscriber-assisted handoff support in multimedia PCS, Mobile Comput. Commun. Rev., vol. 1, no. 3, 1997, pp. 29–36.

[30]Y.B. Lin Paging systems: network architectures and inter-faces, IEEE Network, vol. 11, 1997, pp. 56–61.

[31]Y.B. Lin, Reducing location update cost in a PCS network, IEEE/ACM Trans. Networking, vol. 5, 1997, pp. 25–33.

[32]Y.-B. Lin and I. Chlamtac, Heterogeneous personal communication services: Integration of PCS systems, IEEE Commun. Mag., vol. 34, 1996, pp. 106–113.

[33]Y.B. Lin, F.C. Li, A. Noerpel and I.P. Kun, Performance modeling of multitier PCS system, Int. J. Wireless Information Networks, vol. 3, no. 2, 1996, pp. 67–78.

[34]Y.B. Lin and S.K. DeVries, PCS network signaling using SS7, IEEE Commun. Mag., vol. 33, 1995, pp. 44–55.

REFERENCES 363

[35]Y.B. Lin, Determining the user locations for personal communications services networks, IEEE Trans. Veh. Technol., vol. 43, 1994, pp. 466–473.

[36]J. Markoulidakis, G. Lyberopoulos, D. Tsirkas and E. Sykas, Mobility modeling in third-generation mobile telecommunications systems, IEEE Personal Commun., vol. 4, 1997, pp. 41–56.

[37]M. Marsan, C.-F. Chiasserini, R. Lo Cigno, M. Munafo and A. Fumagalli, Local and global handovers for mobility management in wireless ATM networks, IEEE Personal Commun., vol. 4, 1997, pp. 16–24.

[38]A.R. Modarressi and R.A. Skoog, Signaling system 7: a tutorial, IEEE Commun. Mag., vol. 28, 1990, pp. 19–35.

[39]S. Mohan and R. Jain, Two user location strategies for personal communications services, IEEE Personal Commun., vol. 1, 1994, pp. 42–50.

[40]R. Pandya, D. Grillo, E. Lycksell, P. Mieybegue, H. Okinaka and M. Yabusaki, IMT2000 standards: Network aspects, IEEE Personal Commun., 1997, pp. 20–29.

[41]C.E. Perkins, Mobile IP: Design Principles and Practices, Addison-Wesley Wireless Communications Series. Reading, MA: Addison Wesley, 1998.

[42]C.E. Perkins, IP mobility support version 2, Internet Engineering Task Force, Internet draft, draft-ietf-mobileip-v2-00.text, November 1997.

[43]C. Perkins, Mobile IP, IEEE Commun. Mag., vol. 35, 1997, pp. 84–99.

[44]C. Perkins, Mobile-IP local registration with hierarchical foreign agents, Internet Engineering Task Force, Internet draft; draft-perkins-mobileip-hierfa-00.txt, February 1996.

[45]B. Rajagopalan, An overview of ATM forum’s wireless ATM standards activities,

ACM Mobile Comput. Commun. Rev., vol. 1, no. 3, 1997.

[46]B. Rajagopalan, Mobility management in integrated wireless-ATM networks, ACMBaltzer J. Mobile Networks Applicat. (MONET), vol. 1, no. 3, 1996, pp. 273–285.

[47]E. del Re, A coordinated European effort for the definition of a satellite integrated environment for future mobile communications, IEEE Commun. Mag., vol. 34, 1996, pp. 98–104.

[48]C. Rose, State-based paging/registration: A greedy technique, IEEE Trans. Veh. Technol., vol. 48, 1999, pp. 166–173.

[49]C. Rose and R. Yates, Ensemble polling strategies for in-creased paging capacity in mobile communication networks, ACM/Baltzer Wireless Networks J., vol. 3, no. 2, 1997, pp. 159–167.

[50]C. Rose and R. Yates, Location uncertainty in mobile networks: a theoretical framework, IEEE Commun. Mag., vol. 35, 1997, pp. 94–101.

[51]C. Rose, Minimizing the averagecost of paging and reg-istration: a timer-based method,

ACM-Baltzer J. Wireless Networks, vol. 2, no. 2, 1996, pp. 109–116.

[52]C. Rose and R. Yates, Minimizing the average cost of paging under delay constraints,

ACM-Baltzer J. Wireless Networks, vol. 1, no. 2, 1995, pp. 211–219.

[53]S. Tabbane, Location management methods for 3rd generation mobile systems, IEEE Commun. Mag., vol. 35, 1997, pp. 72–78.

[54]C.-K. Toh, A unifying methodology for handovers of het-erogeneous connections in wireless ATM networks, ACM SIGCOMM Comput. Commun. Rev., vol. 27, no. 1, 1997, pp. 12–30.

[55]C.-K. Toh, A hybrid handover protocol for local area wireless ATM networks, ACMBaltzer J. Mobile Networks Applicat. (MONET), vol. 1, no. 3, 1996, pp. 313–334.

364 MOBILITY MANAGEMENT

[56]M. Veeraraghavan and G. Dommetry, Mobile location man-agement in ATM networks, IEEE J. Select. Areas Commun., vol. 15, 1997, pp. 1437–1454.

[57]M. Veeraraghavan, M. Karol, and K. Eng, Mobility and connection management in a wireless ATM LAN, IEEE J. Select. Areas Commun., vol. 15, 1997, pp. 50–68.

[58]J.Z. Wang, A fully distributed location registration strategy for universal personal communication systems, IEEE J. Select. Areas Commun., vol. 11, 1993, pp. 850–860.

[59]M. Werner, C. Delucchi, H.-J. Vogel, G. Maral, and J.-J. De Ridder, ATM-based routing in LEO/MEO satellite networks with intersatellite links, IEEE J. Select. Areas Commun., vol. 15, 1997, pp. 69–82.

[60]M. Werner, A. Jahn, E. Lutz, and A. Bottcher, Analysis of system parameters for LEO/ICO-satellite communication net-works, IEEE J. Select. Areas Commun., vol. 13, 1995, pp. 371–381.

[61]R. Yates, C. Rose, B. Rajagopalan and B. Badrinath, Analysis of a mobile-assisted adaptive location management strategy, ACM-Baltzer J. Mobile Networks Applicat.

(MONET), vol. 1, no. 2, 1996, pp. 105–112.

[62]A. Yenerand C. Rose, Highly mobile users and paging: Optimal polling strategies, IEEE Trans. Veh. Technol., vol. 47, 1998, pp. 1251–1257.

[63]D.R. Wilson, Signaling system no. 7, IS-41 and cellular telephony networking, Proc. IEEE, vol. 80, 1992, pp. 664–652.

[64]C. Perkins and D. Johnson, Route optimization in mobile IP, Internet Engineering Task Force, Internet draft; draft-ietf-mobileip-optom-07.txt, 20 November 1997.

[65]P. Calhoun and C. Perkins, Tunnel establishment protocol, Internet Engineering Task Force, Internet draft; draft-ietfmobileip- calhoun-tep-00.txt, 21 November 1997.

[66]G. Troxel and L. Sanchez, Rapid authentication for mobile IP, Internet Engineering Task Force, Internet draft; draft-ietf-mobileip-ra-00.txt, December 1997.

[67]R. Yuan, S.K. Biswas, L.J. French, J. Li, and D. Raychaudhuri, A signaling and control architecture for mobility support, ACM-Baltzer J, Mobile Networks Applicat. (MONET), vol. 1, no. 3, 1996, pp. 287–298.

[68]M. Johnsson, Simple mobile IP, Internet Engineering Task Force, Internet-draft, Ericsson; draft-ietf-mobileip-simple-00.txt, March 1999.

[69]C.B. Becker, B. Patil and E. Qaddoura, IP mobility architecture framework, Internet Engineering Task Force, Internet draft; draft-ietf-mobileip-ipm-arch-00.txt, March 1999.

[70]J.M. Benedetto, Economy-class ion-defying IC’s in orbit, IEEE Spectrum, vol. 35, 1998, pp. 36–41.

[71]E. Lutz, Issues in satellite personal communication systems, ACM J. Wireless Networks, vol. 4, no. 2, 1998, pp. 109–124.

[72]B. Miller, Satellite free mobile phone, IEEE Spectrum, vol. 35, 1998, pp. 26–35.

[73]F. Ananasso and F.D. Priscoli, Issues on the evolution toward satellite personal communication networks, in Proc. GLOBECOM’95, London, pp. 541–545.

[74]E. del Re, R. Fantacci and G. Giambene, Call blocking performance for dynamic channel allocation technique in future mobile satellite systems, Proc. Inst. Elect. Eng., Commun., vol. 143, no. 5, 1996, pp. 289–296.

[75]D. Hong and S.S. Rappaport, Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and non-prioritized handoff procedures, IEEE Trans. Vehic. Technol., vol. VT35, no. 3, 1986, pp. 77–92.

REFERENCES 365

[76]CEAS Technical Report no. 773, 1 June 1999, College of Engineering and Applied Sciences, State University of New York, Stony Brook, NY, USA.

[77]A. Acampora and M. Naghshineh, Control and quality-of-service provisioning in high speed microcellular networks, IEEE Person. Commun., vol. 1, 1994, pp. 36–42.

[78]D. Levine, I. Akyildiz and M. Naghshineh, Resource estimation and call admission algorithm for wireless multimedia using the shadow cluster concept, IEEE/ACM Trans. Networking, vol. 5, no. 1, 1997, pp. 1–12.

[79]V. Bharghavan and J. Mysore, Profile based next-cell prediction in in-door wireless LANs, in Proc. IEEE Singapore Int. Conf. Networking, April 1997, pp. 147–152.

[80]G. Liu and G.Q. Maguire Jr, Transmit activity and intermodal route planner, Technical Report, Royal Institute of Technology, Stockholm, February 1995.

[81]P. Bahl, T. Liu and I. Chlamtac, Mobility modeling, location tracking, and trajectory prediction in wireless ATM networks, IEEE J. Select. Areas Commun., vol. 16, 1998,

pp.922–937.

[82]A. Aljadhai and T. Znati, A framework for call admission control and QoS support in wirelessnetworks, in Proc. INFOCOM99, vol. 3, New York, March 1999, pp. 1014– 1026.

[83]A. Aljadhai and T. Znati, A predictive bandwidth allocation scheme for multimedia wireless networks, in Proc. Conf. Communication Networks and Distributed Systems Modeling and Simulation, Phoenix, AZ, January 1997, pp. 95–100.

[84]A.R. Aljadhai and T.F. Znati. Predictive mobility support for QoS provisioning in mobile wireless environments IEEE J. Selected Areas Commun., vol. 19, no. 10, 2001,

pp.1915–1931.

[85]A. Talukdar, B.R. Badrinath, and A. Acharya, On accommodating mo-bile hosts in an integrated services packet network, in Proc. IEEE IN-FOCOM, vol. 3, Kobe, Japan, April 1997, pp. 1046–1053.

[86]S.E. Dreyfus, An appraisal of some shortest-path algorithms, Opns. Res., vol. 17, 1969,

pp.395–412.

12

Adaptive Resource

Management

12.1 CHANNEL ASSIGNMENT SCHEMES

A given radio spectrum (or bandwidth) can be divided into a set of disjoint or noninterfering radio channels. All such channels can be used simultaneously while maintaining an acceptable received radio signal. In order to divide a given radio spectrum into such channels, many techniques such as frequency division (FDMA/OFDMA), time division (TDMA/TH UWB), or code division (CDMA/MC CDMA) can be used, as discussed in Chapter 2. In FDMA, the spectrum is divided into disjoint frequency bands, whereas in TDMA the channel separation is achieved by dividing the usage of the channel into disjoint time periods called time slots. In CDMA, the channel separation is achieved by using different spreading codes. The major criteria in determining the number of channels with a certain quality that can be used for a given wireless spectrum is the level of received signal quality that can be achieved in each channel.

If Si(k) is the set (i) of wireless terminals that communicate with each other using the same channel k, then due to the physical characteristics of the radio environment, the same channel k can be reused simultaneously by another set j if the members of sets i and j are spaced sufficiently apart. All such sets which use the same channel are referred to as co-channel sets or simply co-channels. The minimum distance at which co-channels can be reused with acceptable interference is called the ‘co-channel reuse distance’ D. For illustration see Figure 12.1.

This is possible because, due to propagation path loss in the radio environment, the average power received from a transmitter at distance d is proportional to PTdα where α is a number in the range 3–5 depending on the physical environment, and PT is the average transmitter power. Thus, by adjusting the transmitter power level and/or the distance d

Advanced Wireless Networks: 4G Technologies Savo G. Glisic

C 2006 John Wiley & Sons, Ltd.