Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Schechter Minimax Systems and Critical Point Theory (Springer, 2009)

.pdf
Скачиваний:
40
Добавлен:
22.08.2013
Размер:
2.13 Mб
Скачать

Martin Schechter

Minimax Systems

and Critical Point Theory

Birkhäuser

Boston • Basel • Berlin

Martin Schechter Mathematics Department University of California Irvine, CA 92697-3875 mschecht@math.uci.edu

ISBN 978-0-8176-4805-3

e-ISBN 978-0-8176-4902-9

DOI 10.1007/ 978-0-8176-4902-9

 

Library of Congress Control Number: 2009928827

Mathematics Subject Classification (2000): 35J20, 35J65, 47J30, 49J35, 58E05

© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Birkhäuser Boston, c/o Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Birkhäuser Boston is part of Springer Science+Business Media (www.birkhauser.com)

BS D

To my wife, Deborah, our children, our grandchildren (twenty four so far) our great grandchildren (six so far) and our extended family.

May they all enjoy many happy years.

Contents

Preface

 

xi

1 Critical Points of Functionals

1

 

1.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

 

1.2

Extrema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

 

1.3

Palais–Smale sequences . . . . . . . . . . . . . . . . . . . . . . . . .

2

 

1.4

Cerami sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

 

1.5

Linking sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

 

1.6

Previous definitions of linking . . . . . . . . . . . . . . . . . . . . .

4

 

1.7

Notes and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

2

Minimax Systems

7

 

2.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

 

2.2

Definitions and theorems . . . . . . . . . . . . . . . . . . . . . . . .

8

 

2.3

Linking subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

 

2.4

A variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

2.5

Weaker conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

2.6

Some consequences . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

2.7

Notes and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

3 Examples of Minimax Systems

17

 

3.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

 

3.2

A method using homeomorphisms . . . . . . . . . . . . . . . . . . .

17

 

3.3

A method using metric spaces . . . . . . . . . . . . . . . . . . . . .

19

 

3.4

A method using homotopy-stable families . . . . . . . . . . . . . . .

19

 

3.5

Examples of linking sets . . . . . . . . . . . . . . . . . . . . . . . .

21

 

3.6

Various geometries . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

 

3.7

A sandwich theorem . . . . . . . . . . . . . . . . . . . . . . . . . .

26

 

3.8

Notes and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

4

Ordinary Differential Equations

31

 

4.1

Extensions of Picard’s theorem . . . . . . . . . . . . . . . . . . . . .

31

 

4.2

Estimating solutions . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

 

4.3

Extending solutions . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

viii

 

 

Contents

 

4.4

The proofs . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

35

 

4.5

An important estimate .

. . . . . . . . . . . . . . . . . . . . . . . . .

36

5

The Method Using Flows

 

39

 

5.1

Introduction . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

39

 

5.2

Theorem 2.4 . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

39

 

5.3

Theorem 2.12 . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

41

 

5.4

Theorem 2.14 . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

44

 

5.5

Theorem 2.21 . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

45

6

Finding Linking Sets

 

51

 

6.1

Introduction . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

51

 

6.2

The strong case . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

52

 

6.3

The remaining proofs .

. . . . . . . . . . . . . . . . . . . . . . . . .

54

 

6.4

Notes and remarks . .

. . . . . . . . . . . . . . . . . . . . . . . . .

56

7

Sandwich Pairs

 

57

 

7.1

Introduction . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

57

 

7.2

Criteria . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

58

 

7.3

Notes and remarks . .

. . . . . . . . . . . . . . . . . . . . . . . . .

61

8

Semilinear Problems

 

63

 

8.1

Introduction . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

63

 

8.2

Bounded domains . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

63

 

8.3

Some useful quantities

. . . . . . . . . . . . . . . . . . . . . . . . .

69

 

8.4

Unbounded domains .

. . . . . . . . . . . . . . . . . . . . . . . . .

71

 

8.5

Further applications . .

. . . . . . . . . . . . . . . . . . . . . . . . .

75

 

8.6

Special cases . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

80

 

8.7

The proofs . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

81

 

8.8

Notes and remarks . .

. . . . . . . . . . . . . . . . . . . . . . . . .

83

9

Superlinear Problems

 

85

 

9.1

Introduction . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

85

 

9.2

The main theorems . .

. . . . . . . . . . . . . . . . . . . . . . . . .

86

 

9.3

Preliminaries . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

88

 

9.4

Proofs . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

89

 

9.5

The parameter problem

. . . . . . . . . . . . . . . . . . . . . . . . .

92

 

9.6

The monotonicity trick

. . . . . . . . . . . . . . . . . . . . . . . . .

97

 

9.7

Notes and remarks . .

. . . . . . . . . . . . . . . . . . . . . . . . .

104

10

Weak Linking

 

107

10.1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

10.2Another norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

10.3

Some examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

112

10.4

Some applications . . . . . . . . . . . . . . . . . . . . . . . . . . . .

114

10.5

Notes and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . .

126

Contents

ix

11 Fuc´ıkˇ Spectrum: Resonance

129

11.1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

11.2The curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

11.3

Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

135

11.4

Notes and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . .

139

12 Rotationally Invariant Solutions

141

12.1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

12.2The spectrum of the linear operator . . . . . . . . . . . . . . . . . . . 142

12.3

The nonlinear case . . . . . . . . . . . . . . . . . . . . . . . . . . .

144

12.4

Notes and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . .

147

13 Semilinear Wave Equations

149

13.1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

13.2Convexity and lower semi-continuity . . . . . . . . . . . . . . . . . . 149

13.3 Existence of saddle points . . . . . . . . . . . . . . . . . . . . . . . 152

13.4Criteria for convexity . . . . . . . . . . . . . . . . . . . . . . . . . . 155

13.5Partial derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

 

13.6

The theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

158

 

13.7

The proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

158

 

13.8

Notes and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . .

161

14

Type (II) Regions

163

 

14.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

163

 

14.2

The asymptotic equation . . . . . . . . . . . . . . . . . . . . . . . .

166

 

14.3

Local estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

168

 

14.4

The solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

172

 

14.5

Notes and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . .

175

15 Weak Sandwich Pairs

177

 

15.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

177

 

15.2

Weak sandwich pairs . . . . . . . . . . . . . . . . . . . . . . . . . .

178

 

15.3

Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

184

 

15.4

Notes and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . .

190

16

Multiple Solutions

191

16.1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

16.2Two examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

16.3

Statement of the theorems . . . . . . . . . . . . . . . . . . . . . . .

192

16.4

Some lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

194

16.5

Local linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

206

16.6

The proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

208

16.7

Notes and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . .

209

x

 

Contents

17 Second-Order Periodic Systems

 

213

17.1

Introduction . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

213

17.2

Proofs of the theorems . . . . .

. . . . . . . . . . . . . . . . . . . .

215

17.3

Nonconstant solutions . . . . . .

. . . . . . . . . . . . . . . . . . . .

221

17.4

Notes and remarks . . . . . . .

. . . . . . . . . . . . . . . . . . . .

226

Bibliography

 

229

Index

 

 

241

Preface

Many problems in science involve the solving of differential equations or systems of differential equations. Moreover, many of these equations and systems come from variational considerations involving mappings (called functionals) into the real number system. As a simple example, consider the problem of finding a solution of

(1)

u (x) = f (x, u(x)), x I = [a, b],

under the conditions

 

(2)

u(a) = u(b) = 0.

Assume that the function f (x, t) is continuous in I × R. The corresponding functional is

 

 

 

b

)2 + 2F(x, u)] dx,

(3)

G(u) =

a

[(u

where

t

F(x, t) := f (x, s) ds.

0

It is easy to show that u(x) is a solution of the problem (1), (2) if and only if it satisfies

(4)

G (u) = 0.

Thus, in such cases, solutions of the equations or systems are critical points of the corresponding functional. As a result, anyone who is interested in obtaining solutions of the equations or systems is also interested in obtaining critical points of the corresponding functionals. The latter problem is the subject of this book.

The classical way of obtaining critical points was to search for maxima or minima. This is possible if the functional is bounded from above or below. However, when this is not the case, there is no organized way of finding critical points.

Linking theory is an attempt to “level the playing field,” i.e., to find a substitute for semiboundedness. It finds a pair of subsets A, B of the underlying space that allow the functional to have the same advantages as semibounded functionals if the subsets separate the functional. They separate a functional G if

(5)

sup G < inf G.

A B

Соседние файлы в предмете Экономика