Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка по ФОИТ.doc
Скачиваний:
215
Добавлен:
31.05.2015
Размер:
1.33 Mб
Скачать

12.1. Свет, ультрафиолетовое и инфракрасное излучение

Светэто совокупность электромагнитных волн различной длины. Диапазон длин волн видимого света – от 0,4 до 0,75 мкм. К нему примыкают области невидимого света –ультрафиолетоваяилиУФ-излучение(от 0,4 до 0,1 мкм) иинфракраснаяилиИК-излучение(от 0,75 до 750 мкм).

Видимый свет доносит до нас большую часть информации из внешнего мира. Помимо зрительного восприятия, свет можно обнаружить по его тепловому эффекту, по его электрическому действию или по вызываемой им химической реакции. Восприятие света сетчаткой глаза является одним из примеров его фотохимического действия. В зрительном восприятии определенной длине волны света сопутствует определенный цвет. Так излучение с длиной волны 0,48-0,5 мкм будет голубым; 0,56-0,59 - желтым; 0,62-0,75 красным. Естественный белый свет, есть совокупность волн различной длины, распространяющихся одновременно. Его можно разложить на составляющиеи выцедить их с помощью спектральных приборов (призм,дифракционных решеток,светофильтров).

Как и всякая волна, свет несет с собой энергию, которая зависит от длины волны (или частоты) излучения.

Ультрафиолетовое излучение, как более коротковолновое, характеризуется большей энергией и более сильным взаимодействием с веществом, чем объясняется широкое его использование в практике. Например, излучение ультрафиолетом может инициировать или усиливать многие химические реакции. Существенно влияние ультрафиолета на биологические объекты, например, его бактерицидное действие.

Следует помнить, что ультрафиолетовое излучение очень сильно поглощается большинством веществ, что не позволяет применить при работе с ним обычную стеклянную оптику. До 0,18 мкм используют кварц, фтористый литий, до 0,12 мкм – флюорит; для еще более коротких волн приходится применять отражательную оптику.

Еще более широко в технике используют длинноволновую часть спектра – инфракрасное излучение. Отметить здесь приборы ночного видения, ИК-спектроскопию, тепловую обработку материалов, лазерную технику, измерение на расстоянии температуры предметов.

Тепловое излучение – электромагнитное излучение, испускаемое веществом и возникающее за счет его внутренней энергии. Тепловое излучение имеет сплошной спектр, положение максимума которого зависит от температуры вещества. С ее повышением возрастает общая энергия испускаемого теплового излучения, а максимум перемещается в область малых длин волн.

Применение: системы тепловидения. Тепловидение – это получение видимого изображения тел по их тепловому (инфракрасному) излучению, собственному или отраженному; используется для определения формы и местоположения объектов, находящихся в темноте или в оптически непрозрачных средах. Эти системы применяются для диагностики в медицине, в навигации, геологической разведке, дефектоскопии и т. д. Приемники оптического излучения – устройства, в которых инфракрасное излучение от объекта преобразуется в видимое излучение, например фотоэлементы, ФЭУ, фоторезисторы и т. д. [3].

Рис. 12.2. Фотоэлектронный умножитель:

1 – фото катод;2 – экран;3-10 – катоды;А – анод;

R – нагрузка

Интересное свойство ИК-лучей обнаружил недавно польские ученые: прямое облучение стальных изделий светом инфракрасных ламп сдерживает процессы коррозии не только в условиях обычного хранения, но и при повышении влажности и содержания сернистых газов.

Существует так же способ определения экспозиции засветки фоторезисторов на основе диасоединений и азидов в процессе фотолитографии. С целью улучшения воспроизводимости и увеличения выхода годных приборов, полупроводниковый эпитаксиальный материал с нанесеным на него фоторезистом облучают ультрафиолетовым или видимым светом, причем экспозицию определяют по времени исчезновения полосы поглощения пленки фоторезиста в области 2000-2500 см. в минус первой степени. Здесь облучают коротковолновым светом, а изменение свойств регистрируют по поглощению в инфракрасной области - 2000 см. в минус первой степени соответствуют длине волны 3,07 мкм.

Световое излучение может передавать свою энергию телу не только нагревая его или возбуждая его атомы, но и в виде механического давления. Световое давлениепроявляется в том, что на освещаемую поверхность тела в направлении распространения света действует распределенная сила, пропорциональная плотности световой энергии и зависящая от оптических свойств поверхности. Световое давление на полностью отражающую зеркальную поверхность вдвое больше, чем на полностью поглощающую при прочих равных условиях.

Объяснить это явление можно как с волновой, так и с корпускулярной точек зрения на природу света. В первом случае это результат взаимодействия электрического тока, наведенного в теле электрическим полем световой волны, с ее магнитным полем по закону Ампера. Во втором – результат передачи импульса фотонов поглощающей или отражающей стенке.

Величина светового давления мала. Так, яркий солнечный свет давит на 1 кв.м. черной поверхности с силой всего лишь 0,4 мГ. Однако простота управления световым потоком, "оксеонтактность" воздействия и "избирательность" светового давления в отношении тел с различными поглощающими и отражающими свойствами позволяют с успехом использовать это явление в изобретательстве (например, фотонная ракета).

Так же световое давление используется в микроскопах для уравновешивания малых изменений массы или силы. Измерительное фотоэлектрическое устройство определяет, какая величина светового потока, а, следовательно, и светового давления, потребовалась для компенсации изменения массы образца и восстановления равновесия системы.

Применение светового давления:

- способ перекачки газов или паров из сосуда в сосуд путем создания перепада давления на разделяющей оба сосуда перегородке, имеющей отверстие, с целью повышения эффективности откачки, на отверстие в перегородке фокусируют световой пучок, излучаемый, например, лазером;

- способ по п.1 отличающийся тем, что с целью осуществления избирательной откачки газов или паров и, в частности, с целью разделения изотопных смесей газов или паров, ширину спектра излучения избирают меньше частотного разноса центров линий поглощения соседних с них компонентов, при этом частоту излучателя настраивают на центр линии поглощения откачиваемого компонента.