Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Appendix E.Termination of a transistor port with a load

.pdf
Скачиваний:
10
Добавлен:
23.08.2013
Размер:
45.7 Кб
Скачать

Radio Frequency Circuit Design. W. Alan Davis, Krishna Agarwal

Copyright 2001 John Wiley & Sons, Inc.

Print ISBN 0-471-35052-4 Electronic ISBN 0-471-20068-9

APPENDIX E

Termination of a Transistor Port

With a Load

In the three-port circuit in Fig. E.1, one of the three ports is terminated with an impedance that has a reflection coefficient relative to the reference impedance

Zref:

r

Zi Zref

E.1

Zi C Zref

i D

 

In this expression the subscript i represents s, g, or d depending on whether the device connection is common source, gate, or drain terminated with Zs, Zg, or Zd. The incident and scattered waves from the three-port is

b1

D S11a1

C S12a2

C S13a3

E.2

b2

D S21a1

C S22a2

C S23a3

E.3

b3

D S31a1

C S32a2

C S33a3

E.4

When one of the ports is terminated with ri, then the circuit really is a two-port. The scattering parameters for the common source, gate, and drain connection is shown below:

Common source

S11s D S11

C

S12S21

E.5

1/rs S22

S12s D S13

C

S12S23

E.6

1/rs S22

296

TERMINATION OF A TRANSISTOR PORT WITH A LOAD

297

a1

 

 

 

 

 

 

a 3

 

 

 

 

 

 

 

 

 

 

 

1

G 1

 

 

 

 

D 3

2

 

 

 

 

 

S 2

 

 

 

 

b1

 

 

b 3

 

 

 

 

 

 

 

 

a 2

 

r s

b 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE E.1 Three-port with source terminated with rs.

S21s D S31 C

S32S21

1/rs S22

S22s D S33 C

S23S32

1/rs S22

Common gate

S11g D S22 C

S12S21

1/rg S11

S12g D S23 C

S21S13

1/rg S11

S21g D S32 C

S31S12

1/rg S11

S22g D S33 C

S31S13

1/rg S11

Common drain

S11d D S11 C

S13S31

1/rd S33

S12d D S12 C

S13S32

1/rd S33

S21d D S21 C

S23S31

1/rd S33

S22d D S22 C

S23S32

1/rd S33

E.7

E.8

E.9

E.10

E.11

E.12

E.13

E.14

E.15

E.16

298 TERMINATION OF A TRANSISTOR PORT WITH A LOAD

A numerical example illustrates the process. A given transistor with a set of common source S parameters at 2 GHz is given below:

S11 D 0.136 686

S21 D 3.025 66

S12 D 0.085 6 164

S22 D 0.304 6 136

These are then converted to two-port y parameters. These will be called y11, y31, y13, and y33. The indefinite admittance matrix is formed by adding a third row and column such that the sum of each row and the sum of each column is zero. The resulting 3 ð 3 set of y parameters are obtained:

y11 D 9.681 Ð 10 3 7.695 Ð 10 3

y12 D 12.77 Ð 10 3 C 6.776 Ð 10 3

y13 D 3.086 Ð 10 3 C .9194 Ð 10 3

y21 D 104.2 Ð 10 3 C 20.85 Ð 10 3

y22 D 82.89 Ð 10 3 C 14.39 Ð 10 3

y23 D 21.28 Ð 10 3 C 6.452 Ð 10 3

y31 D 113.8 Ð 10 3 C 13.15 Ð 10 3

y32 D 95.65 Ð 10 3 C 7.618 Ð 10 3

y33 D 18.19 Ð 10 3 C 5.533 Ð 10 3

These are then converted to three-port S parameters using Eq. (10.32) [1]:

S11 D 1.6718 6 168.12°

S12 D 1.6573 63.639°

S13 D 1.0103 613.684°

S21 D 3.1794 6 157.77°

S22 D 2.0959 614.185°

S23 D 0.7156 674.511°

S31 D 1.6455 670.181°

S32 D 2.7564 6 167.02°

S33 D 2.1085 6 153.87°

REFERENCES 299

At this point it is desired to transform these parameters to common gate parameters in which the gate is connected to ground through a short circuit. The resulting common gate two-port S parameters are found from Eqs. (E.9) through (E.12):

S11g D 5.317 6170.925°

S21g D 10.772 6 14.852°

S12g D 2.496 6177.466°

S22g D 6.250 6 7.553°

With the transistor now characterized in the orientation that it is to be used in the oscillator, a choice is made for the impedance at the generator side. If this impedance is chosen to be a 5 nH inductor, the output reflection coefficient is

o D 1.7775 6 30.35°

This shows that oscillation is possible under these loading conditions. The expressions given above for the revised S parameters can be found in [2] using slightly different notation.

REFERENCES

1.K. Kurokawa, “Power Waves and the Scattering Matrix,” IEEE Trans. Microwave Theory Tech., pp. 194–202, 1965.

2.R. M. Dougherty, “Feedback Analysis and Design Techniques,” Microwave J., Vol. 28, pp. 133–150, 1985.