Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fxsgdgf.doc
Скачиваний:
43
Добавлен:
01.06.2015
Размер:
266.24 Кб
Скачать

7,9 Км/с

Первую космическую скорость можно определить через ускорение свободного падения — так как g = GM/R², то

.

Космические скорости могут быть вычислены и для поверхности других космических тел. Например на Луне v1 = 1,68 км/с, v2 = 2,375 км/с

Вторая космическая скорость

[править]

Материал из Википедии — свободной энциклопедии

Анализ первой и второй космической скорости по Исааку Ньютону. Снаряды A и B падают на Землю. Снаряд C выходит на круговую орбиту, D — на эллиптическую. Снаряд E улетает в открытый космос.

Втора́я косми́ческая ско́рость (параболи́ческая ско́рость, ско́рость освобожде́ния, ско́рость убега́ния) — наименьшаяскорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала по сравнению с массой небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела. Предполагается, что после приобретения телом этой скорости оно не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).

Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой. Для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца. Для Солнца вторая космическая скорость составляет 617,7 км/с.

Параболической вторая космическая скорость называется потому, что тела, имеющие при старте скорость, в точности равную второй космической, движутся по дуге параболы относительно небесного тела. Однако, если энергии телу придано чуть больше, его траектория перестает быть параболой и становится гиперболой; если чуть меньше, то она превращается в эллипс. В общем случае все они являются коническими сечениями.

Содержание

  [убрать

  • 1 Вычисление

  • 2 Вторая космическая скорость для различных объектов

  • 3 См. также

  • 4 Примечания

  • 5 Ссылки

[Править]Вычисление

Для получения формулы второй космической скорости удобно обратить задачу — спросить, какую скорость получит тело на поверхности планеты, если будет падать на неё из бесконечности. Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния.

Запишем закон сохранения энергии

где слева стоят кинетическая и потенциальная энергии на поверхности планеты (потенциальная энергия отрицательна, так как точка отсчета взята на бесконечности), справа то же, но на бесконечности (покоящееся тело на границе гравитационного влияния — энергия равна нулю). Здесь m — масса пробного тела, M — масса планеты,R — радиус планеты, G — гравитационная постояннаяv2 — вторая космическая скорость.

Решая это уравнение относительно v2, получим

Между первой и второй космическими скоростями существует простое соотношение:

Квадрат скорости убегания равен удвоенному ньютоновскому потенциалу в данной точке (например, на поверхности планеты):

Тре́тья косми́ческая ско́рость — минимальная скорость, которую необходимо сообщить находящемуся вблизи поверхности Земли телу, чтобы оно могло преодолеть гравитационное притяжение Земли и Солнца и покинуть пределы Солнечной системы[1][2].

При старте с Земли, наилучшим образом используя осевое вращение и орбитальное движение планеты, космический аппарат может достичь третьей космической скорости уже при 16,6 км/с[2] относительно Земли. Для исключения влияния атмосферного сопротивления предполагается, что космический аппарат приобретает эту скорость за пределами атмосферы Земли. Наиболее энергетически выгодный старт для достижения третьей космической скорости должен осуществляться вблизи экватора, движение объекта должно быть сонаправлено осевому вращению Земли и орбитальному движению Земли вокруг Солнца.

Траектория аппарата, достигшего третьей космической скорости, будет частью дуги параболы (скорость убывает к нулю асимптотически).

Содержание

  [убрать

  • 1 Вычисление

  • 2 Примечания

  • 3 См. также

  • 4 Примечания

  • 5 Ссылки

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]